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Understand the
foundational concepts
and syntax of C++
programming.

Apply control structures,
functions, and modular
programming
techniques.

Implement object-
oriented programming
concepts like classes,
inheritance, and
polymorphism

CLO’'S

Utilize encapsulation,
abstraction, and dynamic
memory management
effectively.

Develop reusable and
efficient solutions using
templates, STL, and
exception handling.

Integrate all learned
concepts to design,
develop, and debug
complete projects.



Recommended Books
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1. E. Balagurusamy, ""Object-Oriented Programming with C++", Tata McGraw-
Hill (ISBN: 9781259029936)

2. Bjarne Stroustrup, '"The C++ Programming Language'', Addison-Wesley
(ISBN: 9780321563842)

3. Scott Meyers, ""Effective C++"", Addison-Wesley (ISBN: 9780321334879)
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Q&A INCLASS ASSESSMENT

ASssessment

» Pattern

BRAIN STROMING PRACTICAL EXCERSISE

GROUP WORK




Wee
k No.
1

Course Plan

Topics and Key Outcomes

Introduction to C++: Basics of programming,
installing tools, writing the first program,
variables, and 1/0O.

Operators and Control Structures: Using
operators, if statements, and loops (for,
while).

Functions and Arrays: Creating functions,
passing values, recursion, and using 1D/2D
arrays.

Introduction to OOP: Difference between
procedural and object-oriented programming,
basic class and object.

Classes and Objects: Constructors, destructors,
member functions, and this pointer.

Inheritance: Base/derived classes, types of

inheritance, and constructor/destructor chaining.

Polymorphism: Function overloading, virtual
functions, abstract classes, and dynamic method
dispatch.

Encapsulation: Grouping data and controlling
access with private, protected, and public
modifiers.

Abstraction: Hiding implementation details and
designing abstract classes and interfaces.

Teaching-Learning Strategies

Assessment Strategies

Lecture, multimedia, hands-on practice Feedback, Q&A, simple

Lecture, practical examples

Lecture, hands-on practice

Lecture, group discussions

Lecture, problem-solving sessions
Lecture, multimedia

Lecture, group discussions

Lecture, hands-on practice

Lecture, hands-on practice

quiz

Feedback, Q&A, short
quiz

Midterm Quiz #1,
practice problems

Feedback, Q&A

Case Study #1,
Assignment #1
Feedback, Q&A,
discussions
Feedback, Q&A,
examples

Feedback, Q&A, quizzes

Feedback, Q&A, quizzes

Alignment to
CLO
CLO1

CLO2

CLO2

CLO3

CLO3
CLO4

CLO4

CLO3

CLO3
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10

11

12

13

14

15

16

17

Course Plan

Pointers and Memory: Working with pointers,
new/delete, and smart pointers.

Lecture, multimedia

File Handling: Reading/writing files, working with Lecture, practical examples

binary files, and random file access.

Templates: Creating generic functions and classes

using templates.

Standard Template Library (STL): Using
vectors, lists, maps, and common algorithms like
sort and £ind.

Exception Handling: Handling errors with try,

catch, and throw; creating custom exceptions.

Advanced Concepts: Multiple inheritance,
namespaces, and typecasting (dynamic cast,
static cast).

Project Work: Planning, building, testing, and
reviewing a project like Library Management or
Banking System.

Revision and Final Assessment: Review of all
topics, practical problems, and final exams.

Lecture, group exercises

Lecture, hands-on practice

Lecture, practical examples

Lecture, hands-on exercises

Group work, instructor
guidance

Lecture, problem-solving
sessions

Feedback, Q&A, simple
assignments

Feedback, Q&A

Feedback, short quiz

Feedback, assignments

Feedback, Q&A

Feedback, practice problems

Project reviews, peer
evaluations

Final written and practical
exams

CLO3

CLO3

CLO4

CLO4

CLO3

CLO4

CLO5

CLO5
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Week 1

Introduction to C++
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Introduction to C++

Welcome to your journey into the world of C++ programming. This
presentation provides a foundation in the fundamental concepts that will

empower you to build software and solve real-world problems.
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Installing C++ Tools and IDE

Compiler IDE
A compiler translates your C++ code into machine-readable An Integrated Development Environment (IDE) offers features
instructions. Popular compilers include g++ and clang. like code editing, debugging, and project management. Common

IDEs include Visual Studio Code, Code::Blocks, and CLion.


https://gamma.app/?utm_source=made-with-gamma

Writing Your First C++ Program
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Code Output

#include Hello, World!

using namespace std;

int main() {
cout << "Hello,
World!";

return 0;
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Debitis

Variables and Data Types

—
H# (D Z =
int float, double char string
Integer values, whole Floating-point numbers, with Single characters, e.g., 'A', '?', Sequences of characters, e.g.,

numbers, e.g., 10, -5, O. decimal values, e.g., 3.14, -2.5. '%'. "Hello", "C++".
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Arithmetic Operations and
Expressions

y(+2x)

6
23x2*2 +15=1In2"= = (2| =xn)(c++4 1 2

2xXx32 + # -1s5 =2 = [45) = = (L]ox+(+17)
2xx1*2 +In*=1/§% x $8==1y)(c+54

Addition Subtraction
«2x5 + = | x4n2 2)= = x X+70 ,
2X22X + = | X4n%= & 2x+(0) A + Adding two numbers, e.g., 5+ 3 = 8.
=2x24+50 [-I'G—BT,,XX"*SZ g

Subtracting one number from another,

218 e.g. 10-7=3.
Ex+212 + = (4§2-18x = = 11/(c +215) g

O e -

3 4

Multiplication Division
Multiplying two numbers, e.g., 2 * 6 =

Dividing one number by another, e.g.,
12.

15/5=3.
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User Input and Output (1/0)

Input Output
#include Enter your age: 25
using namespace std; You are 25 years old.

int main() {

int age;

cout << "Enter your age: ";

cin >> age;

cout << "You are " << age << " years

old.";

return 0;
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Control Structures: Conditional Statements

if else if else
Executes a block of code if a condition is Executes a block of code if the previous if Executes a block of code if all previous if
true. condition is false and a new condition is and else if conditions are false.

true.
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Control Structures: Loops

1 While lowhite loops_levifat
Executes a block of code repeatedly as long as a condition is
true.
fjulsmate_lus, lecid
2 for forrey _tripcle:

Executes a block of code a specified number of times.

3 do-while

Executes a block of code at least once, and then repeatedly

as long as a condition is true.
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Functions and Subroutines

Function Definition

1
A function is a block of code that performs a specific task.
Function Call
2
The main program calls a function to execute its code.
Parameters
3
Functions can receive input values through parameters.
Return Value
4

Functions can return a value back to the calling program.
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Conclusion and Next Steps

Congratulations! You've mastered the fundamentals of C++ programming.
Now explore more advanced concepts such as classes, objects, and data
structures. Practice regularly, experiment with new features, and build your

skills to become a confident C++ developer.
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Week 2
Operators and Control Structures in C++

Introduction to OOP
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Operators and Control
Structures in C++

This presentation will explore the fundamentals of C++ operators and control

structures, essential building blocks for programming.
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Types of Operators in C++

Arithmetic Operators Relational Operators Logical Operators Bitwise Operators

Used for basic mathematical Used for comparing values. Used for combining logical Used for manipulating

operations. expressions. individual bits.
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Arithmetic Operators

Addition (+) Subtraction (-) Multiplication (*)

Adds two operands. Subtracts the second operand from Multiplies two operands.
the first.

Division (/) Modulo (%)

Divides the first operand by the second. Returns the remainder of a division.
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Relation Operator

Relational Operators

> <

greated than crjox

Greater Than (>) Less Than (<)

Erguall to a:
Lespalf cibe
o . . . . . .arduct. (lone-T= -
Checks if the first operand is greater Checks if the first operand is less clochacions = reaiar-ity
less. 10); e
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—— ¢ lessel thal % Equall to:
Requiald Ti.\a-n: Recprialt than fy-1si:
{::::i:gt:::\;,nlvc'orl_u:\?i)!)-'lsle): :gi:a‘f‘;g:ge;:_'i;;]”
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Equal To (==) Not Equal To (!=)

Checks if two operands are equal. Checks if two operands are not
Not equl its:

Rrcopredtlisetf(r=3))):
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Logical Operators

Logical AND (&&) Logical NOT (!)
Returns true if both operands are true. Reverses the logical state of an operand.
1 2 3
Logical OR (| |)

Returns true if at least one operand is true.
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If Statements in C++

Condition
1
True
2
Execute code block.
False
3

Skip code block.

An if statement executes a code block if a condition is true. If false, the block is skipped.
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If-Else Statements

1 Condition
True
pi
Execute code block 1.
False
3

Execute code block 2.

If the condition is true, the first code block is executed; otherwise, the second code block is executed.
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For Loops in C++

1 2

Initialization Condition

3

Increment

A for loop executes a block of code repeatedly, based on an initialization,

condition, and increment/decrement.
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' Cotle (steps)

Conditon:

P ...

While Loops in C++

Condition True False

Execute code block. Exit loop.

A while loop executes a block of code repeatedly as long as a condition remains true. Once the condition becomes false, the loop terminates.
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Conclusion and Key Takeaways

Operators and control structures form the core of programming logic. By
mastering these concepts, you can create dynamic and efficient C++
programs. Continue to explore and experiment with these fundamental

building blocks to enhance your programming skills.
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Week 3

Functions and Arrays in C++
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Functions and Arrays in C++

This presentation explores fundamental concepts of functions and arrays in

C++, providing a structured overview and practical examples.
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Understanding Functions

Functions are reusable blocks of code that perform specific

tasks.
They enhance code organization and readability.

They promote modularity and code reusability.
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Defining and Calling Functions

Defining a function involves specifying its name, return type, and
int sum(int a, int b) {
parameters.
return a + b;

Calling a function executes its code block. }

int main() {
int result = sum(5, 3);

cout << "Sum: << result;

return 9;
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Passing Arguments to Functions

Arguments are values passed to a function during its call.

They are used as input for the function's operations.

trynedapy:grmpmns

paribntt:;t()); (burbutt));
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Returning Values from Functions

Functions can return a value using the return statement.

The returned value can be used in the calling code.

funcion:
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Accessing Array Elements

Arrays store collections of elements of the same data type.
int numbers[5] = {10, 20, 30, 40, 50};

Elements are accessed using their index, starting from 0. cout << "Element at index 2: <<

numbers[2];
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2D Arrays: Representing Tabular Data

2D arrays are used for storing tabular data, such as matrices or

grids.

They consist of rows and columns, accessed using two indices.
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Function Parameters: Passing by Value vs. Reference

Passing by value creates a copy of the argument, preventing

modification of the original.

pas-by-reference

Passing by reference allows direct modification of the original

argument.
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Function Overloading: Multiple Functions with the Same
Name

Function overloading allows defining multiple functions with the

Function Oveloading in C++

same name.
The compiler selects the correct function based on the Pree. Iption pasv. same
Pamoken = (lid = bbxt))) functior of .delect of
argument types. (iockaj! = (1:d = htuh)) plaranetiomllyypes.
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Defining Overloaded Functions

Overloaded functions have the same name but different
, int sum(int a, int b) {
parameter lists.

return a + b;
They enhance code reusability by providing different ways to }

achieve the same result.

double sum(double a, double b) {

return a + b;
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Week 4

Introduction to OOP
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Introduction to Object-Oriented
Programming

This presentation explores the fundamental concepts of Object-Oriented
Programming (OOP), a powerful programming paradigm that provides a

structured approach to software development.
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Procedural vs. Object-Oriented Programming

Procedural Programming Object-Oriented Programming

Focuses on procedures or functions. Data and operations are Emphasizes objects that encapsulate data and behavior. Objects

separate. Data is passed to functions for processing. interact with each other through methods.
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Key Concepts of OOP: Classes

and Objects

1 Class

A blueprint or template that
defines the structure and

behavior of an object.

Object

An instance of a class,
containing specific data

values and methods.
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Defining a Class in C++

class Dog {
public:
string name;
int age;
void bark() {
cout << "Woof!" << endl;

s
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Creating Objects from a Class

Dog myDog;

myDog.name = "Buddy";
myDog.age = 3;
myDog.bark();
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class Car {

public:

string model;

int year;
void start() {

J

cout << "Engine started." << endl;

};

int main() {

Car myCar;

myCar.model = "Ford Mustang”;

2023;

myCar.start();

myCar.year

return 0;
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Constructors and Destructors

class Student {
public:
string name;
int rollNo;
Student(string n, int r) {
name = n;
rollNo = r;
}
~Student() {

cout << "Destructor called for

};

<< name << endl;
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Inheritance: Extending Classes

class Animal {
public:
void eat() {

cout << "Animal eating." << endl;

}
i

class Dog : public Animal {
public:
void bark() {
cout << "Woof!" << endl;

}
Jir
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1SS1ISS 1IN

| | class Circle : public Shape {
public:
+ + void draw() {
cout << "Drawing a circle." << endl;

}
o

Polymorphism: Overriding Methods

class Shape {
public:

virtual void draw() = 0;

b g

Square

draw

draw

class Square : public Shape {
public:
void draw() {

cout << "Drawing a square." << endl;

s
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Conclusion and Key Takeaways

OOP promotes code reusability, modularity, and maintainability.
Understanding classes, objects, inheritance, and polymorphism empowers

you to build complex and robust software applications.
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Week 5

Classes and Objects
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Classes and Objects:
Constructors, Destructors,
Member Functions, and this
Pointer

Explore the fundamental building blocks of object-oriented programming in
C++, gaining a deep understanding of classes, objects, and their associated

concepts.
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Introduction to Classes and Objects

Classes Objects

Blueprints or templates that define the structure and behavior Instances of a class, representing real-world entities. They hold

of objects. They encapsulate data and functions. data and can execute the class's functions.
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Defining a Class
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cout << "Brand: << brand << endl;

cout << "Model: " << model << endl;

cout << "Year: << year << endl;
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Constructors and Destructors

1 Constructors

Special member functions
that initialize objects when

they are created. They have

the same name as the class.

Destructors

Special member functions
that clean up resources when
objects are destroyed. They
have the same name as the

class prefixed with a tilde (~).

G

Coneset+
Deestuctor
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Member Functions

class Car {

public:
Car(string b, string m, int y) { // Constructor
brand = b;
model = m;
year = y;

}

void showCar() { // Member function
cout << "Brand: " << brand << endl;
cout << "Model: " << model << endl;

cout << "Year: << year << endl;
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Priyvate Public

{ prott() {):

awd =1 L Fe

Access Specifiers: public, private, protected

public private protected

Members accessible from anywhere, Members accessible only within the Members accessible within the class

including outside the class. class itself. and its derived classes.
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The this Pointer
) />

Context Purpose

A special pointer available inside Used to differentiate between
member functions that points to the member variables and local variables

current object. with the same name.
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Class Inheritance

1 Base Class

Base Class

Innertions
Class

The parent class from which other classes inherit properties

and behaviors.

}
Burstione Ractiont
Classs Lass
2 Derived Class
The child class that inherits from the base class, extending

its fu nctiona“ty, Pericment Pradand Chidriant
Classe |asst Classe
3 Reusability i E g

Inheritance promotes code reuse by allowing derived classes

to use the base class's members.
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Polymorphism and Virtual Functions

Virtual Functions

1 Member functions declared with the keyword "virtual" in the base class.
Overriding

2 Derived classes can provide their own implementations of virtual functions, allowing for dynamic polymorphism.
Late Binding

3 The actual function to be called is determined at runtime, based on the object type.
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Code Examples and Live Demonstrations

Let's dive into practical examples and live demonstrations to solidify your understanding of these essential C++ concepts.
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Week 6

Inheritance
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Inheritance in C++

Inheritance is a powerful C++ concept that enables code reusability and
modularity by creating relationships between classes. In this presentation, we

will explore inheritance basics, its various types, and key aspects like

constructor/destructor chaining and polymorphism.
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Introduction to Inheritance: Defining Base and Derived
Classes

Base Class Derived Class

The parent class that defines common characteristics and A class that inherits from a base class, gaining its attributes and

functions. In our example, 'Animal’ is the base class. functions. 'Dog' is a derived class inheriting from 'Animal’.
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Mull(ple Indertance
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Inhertance
Therrorchical
Inhertance

Types of Inheritance

Single Inheritance

A single derived class inherits from
one base class. For example, 'Dog'

inherits from 'Animal’.

Hierarchical Inheritance

Multiple derived classes inherit from a
single base class. For example, 'Dog’,
'Cat’, and 'Bird' could all inherit from

'"Animal’.

Multiple Inheritance

A derived class inherits from multiple
base classes. For example, a 'Car’ class
might inherit from 'Vehicle' and

'‘Engine’ classes.

Multilevel Inheritance

A derived class inherits from a base
class, and another derived class
inherits from the first derived class.
For example, a 'SportCar' class could
inherit from 'Car’, which inherits from

'Vehicle'.
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Inheritance and Access Specifiers

Public Protected Private
Members declared public in the base Members declared protected can be Members declared private are not
class can be accessed directly by derived accessed by derived classes, but not by accessible by derived classes or external

classes and external code. external code. code.
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N =

DESTRICTION

Constructors and Destructors in
Inheritance

1

Constructor Chaining

Derived class constructors
automatically call the base

class constructor.

Destructor Execution
Order

Destructors are called in the
reverse order of constructor

execution.
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Diagram: Visualizing Inheritance Relationships and
Hierarchy

Animal

1 Base Class

Dog

Derived Class

Cat

Derived Class


https://gamma.app/?utm_source=made-with-gamma

clases: "width- 4"/ = (")
cobfacioher a 1 }
»shape
fectanagler ="with {6+ 1ithh, } 1 }
terneer: 4y=-dake)
pressis class
cobelder: bucstho((+ (astrienl))
foccbete :'setlan;
furengle.:'relent( =1; {)

foreptenl.= sape:
corthet.= frort

foprethanle = ticht", height. > (retrth(];

dasn.- extecirent; )

fineehsace(" = +)

shape: =1}
besparch( = >
lnshtee"=cberstty{ =
besptArnt=obersitt+1())";
treed-funcoction (tin/s= )

t/e. "thsplal}
);

Inheritance in Code: Examples and Syntax

#tinclude <iostream>

class Shape {
public:
Shape(int sides) : sides(sides) {}

void printSides() const { std::cout << "Sides: "

protected:
int sides;

};

class Triangle : public Shape {
public:
Triangle() : Shape(3) {}

<< sides << std::endl; }

void printType() const { std::cout << "Shape: Triangle" << std::endl; }

};

int main() {
Triangle t;
t.printType();
t.printSides(); // Accessing protected member

return 0;
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base classptirt

Polymorphism and Virtual Functions in Inheritance

(D

Runtime Polymorphism Virtual Functions

The ability to call different functions based on the object type at Functions declared with the 'virtual' keyword in the base class

runtime. allow for runtime polymorphism.


https://gamma.app/?utm_source=made-with-gamma

Advantages and Use Cases of
Inheritance in C++

1 2

Code Reusability Modularity
Reduce duplicate code by inheriting Create independent and reusable code
from existing classes. modules.

3

Extensibility

Easily add new features to existing

classes.
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Conclusion: Key Takeaways and
Further Exploration

Inheritance is a cornerstone of object-oriented programming in C++. It
promotes code reusability, modularity, and extensibility, making code more
organized and efficient. Dive deeper into inheritance topics like abstract

classes, virtual destructors, and multiple inheritance to master its full

potential. g S
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Polymorphism
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Polymorphism in C++

Polymorphism, a core concept in object-oriented programming, empowers
code to adapt to different situations and types of objects. This presentation
explores the key facets of polymorphism in C++: function overloading, virtual

functions, abstract classes, and dynamic method dispatch.
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Function Overloading

Same Name, Different Parameters

Function overloading allows defining multiple functions with the
same name but distinct parameter lists. This enables using a

single function name for diverse functionalities.

Compile-Time Resolution

The C++ compiler determines the appropriate function based on

the parameters provided during the function call.
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Function Overloading Example

#include <iostream>
using namespace std;

int add(int x, int y) {
return x + y;

}

double add(double x, double y) {

return x + y;

}

int main() {
int resultl = add(2, 3); // Calls add(int, int)
double result2 = add(2.5, 3.5); // Calls add(double, double)

cout << "resultl: " << resultl << endl;
cout << "result2: " << result2 << endl;
return 0;
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Virtual Functions

1  Base Class Function 2  Runtime Polymorphism

Declaring a function as

virtual in the base class Virtual functions enable
enables derived classes to runtime polymorphism,
provide their own where the specific function
implementations. to execute is determined at
runtime. Tiae Base Class Virtual function

3  Overriding Mechanism

Derived classes can override virtual functions, providing unique

behavior for their objects.
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virtual fomection:

Virtual Functions Example

#include <iostream>
using namespace std;

class Shape {
public:
virtual void draw() {
cout << "Drawing a generic shape" << endl;
}
}s

class Circle : public Shape {
public:
void draw() {
cout << "Drawing a circle" << endl;
}
}s

int main() {
Shape* shapel = new Shape();
Shape* shape2 = new Circle();
shapel->draw(); // Calls Shape::draw()
shape2->draw(); // Calls Circle::draw()

return 0;
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Abstract Classes
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3  Encapsulation of Behavior

Abstract classes enforce a common interface and ensure derived

classes implement specific behaviors.
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Abstract Classes Example

#include <iostream>

using namespace std;
Ad that sttabrr=ineef:

Ad (talliptoan-tystur: "letntriog)
class Animal {

1 Ad cut_rotton> .
p) Ad ffut retabrr=stemt in (aclerfeclon: public:
3 A5 "Ferlaclodam= peoblfr= faction: virtual void makeSound() = @; // Pure virtual function
3 A6  tnt recadle= attef bad: o
4 /> tell testrr=iotion:
4 /6 tnt retaure= rtatl restcherlog: . .
> /> class Dog : public Animal {
.8 public:
. . %
0 / ftut recadl<-pastatlc-(atorericion: vetle] Eiesetiel)
5 “Facleclodaminnstertiog: cout << "Woof!" << endl;
4 /] "Potal> balog" }
9 /> cut Fecablr= tacly restamction: };
4 Costectoom eige iitlleareile;
7 Pur Babse blass tut adizet). Posslats: scylfinction: int main() {
8 Pespertenten™> // Animal animal; // Error: Cannot instantiate abstract class
) Dog dog;
dog.makeSound();

return 0;
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Dynamic Method Dispatch

Runtime Resolution

1
Virtual Function Table (vtable)
v Dynamic method dispatch utilizes a virtual function table (vtable) to determine
the correct function implementation based on the object's type at runtime.
Polymorphic Behavior
3 This process enables polymorphic behavior, where the same code can

interact with objects of different derived classes in a consistent way.
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Dynamic Method Dispatch Example

#include <iostream>
using namespace std;

class Shape {
public:
virtual void draw() {
cout << "Drawing a generic shape" << endl;
}
}s

class Circle : public Shape {
public:
void draw() {
cout << "Drawing a circle" << endl;
}
}s

class Square : public Shape {
public:
void draw() {
cout << "Drawing a square" << endl;
}
}s

int main() {
Shape* shapes[2];
shapes[@] = new Circle();

shapes[1] new Square();
for (int i = 0; i < 2; i++) {
shapes[i]->draw();

}

return 0;
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Polymorphism: A Visual Summary

f(x)

Function Overloading

Multiple functions with same name,
different parameters, resolved at compile-

time.

Y

Abstract Classes

Uninstantiable base classes with pure
virtual functions, enforcing common

interfaces for derived classes.

Virtual Functions

Base class functions that can be
overridden by derived classes, resolved at

runtime.

(D

Dynamic Method Dispatch

Resolving the appropriate function
implementation at runtime, based on the

object's type, using vtables.



https://gamma.app/?utm_source=made-with-gamma

Week 8

Encapsulation
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Encapsulation: Grouping Data
and Access Control

This presentation will explore encapsulation, a fundamental concept in object-
oriented programming (OOP) that enhances code organization, security, and
maintainability. It involves grouping data and the functions that operate on

that data within a single unit, a class, and controlling access to this data.
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Introduction to Encapsulation

Data Hiding Code Organization
Encapsulation helps protect data from unauthorized access and It promotes modularity and code reusability by grouping related
modification by making it private, ensuring data integrity and data and functions together, improving code structure and

consistency. maintainability.
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Data Encapsulation: Private, Protected, and Public

Private
1 Only accessible within the class itself.
Protected
pi
Accessible within the class and its derived classes.
Public
3

Accessible from anywhere, even outside the class.
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Accessing Class Members: Public vs. Private

Private Members Public Members

Cannot be directly accessed from outside the class. Can be accessed directly from outside the class. These are
typically getter and setter functions to control access to private

data.
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Demonstration: Encapsulation in C++

#include PO0O® <« = > Encaspilelation >
fames Fuit B Entzuyenion  Mst
>

1 1 onclustins vttapolnen<> &
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pLoy { 2 Encassplestation: <1; =
private: O 2
5 Cooluester: = (10) 8
6 Cantleat(M/cerat, 1ling. 110: =

int empld;

7 Cantinesibls (Crnat Flslane = 2020)
std: :Str‘ing name; 9 Cantiess(Diapef finovy, 2009;

17 Centinatting mhatt copping is, 2265;
Centines{Dne trua: 44;

public: X private = (08)
. . . s 12 crreater ditllect: = 10,20%);
void setEmpId(int id) { empId = id; } : Meind gy e
3 . 17 vecple palo;
int getEmpId() { return empld; } 23 tanteprants:
) lidr, lat cappated 13, 2700

void setName(std::string n) { name = n; } 17
18 mallles (10;

std::string getName() { return name; } 22 Inctineratione (lode|")
47 Contterrater ductirtins
}} 27 claterstolle (lenilator, IDeflck apores #0086)
23 habouets, 41,
29 Cantesetar(iling Oelege 5il3;
Cracersalble expre plo:
int main() { 1
22 Ciless(latle dates member =3, 2007,
Employee employee; 27 fingine 630; lto.
employee . setEmpId (123) 8 24 Inntreilatio datt, geohate, 70:
18 Canterslatte.datt,=egaiter parse 'le:;
employee.setName("Alice"); 19 franc.loger 6c - lewt

21 Centrsing@i public diate_cat') )
Canterandu(tion);
*inanee is reasiBer (ood/;

<< employee.getEmpId() << std::endl; m@;muwmma

std::cout << "Employee ID:
std::cout << "Employee Name: << employee.getName() << std::endl;

return 0;
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Benefits of Encapsulation

1  Data Protection 2  Modularity
Shields internal data from unauthorized access and Encapsulation promotes modularity, making code easier to
modification, ensuring data integrity. understand, maintain, and debug.

3  Code Reusability 4  Flexibility
Encapsulated classes can be reused across different projects, Encapsulation allows for changes to internal implementation

reducing code duplication. without affecting external code.
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Encapsulation and Information Hiding

Data Hiding
1 Key concept behind encapsulation. Prevents direct access to internal data members, ensuring data integrity.
Controlled Access
2 Provides controlled access to data through publicly exposed methods (getter and
setter functions).
Maintainability
3 Simplifies code maintenance by allowing changes to internal

implementation without impacting external code.
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Practical Example: Encapsulating a

Bank Account

Data Members

account number, balance, etc.

©}
Information Hiding

Internal data members are private,

accessed only through public methods.

fo)

Public Methods

deposit(), withdraw(), getBalance()
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Conclusion and Key Takeaways

Encapsulation is a fundamental OOP concept that promotes data protection,
code organization, reusability, and maintainability. By carefully defining data
and methods, and controlling access through public interfaces, developers can
build robust and maintainable software systems. Understanding and applying
encapsulation principles is essential for building reliable and scalable

software.
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Abstraction
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Abstraction in C++

This presentation will cover the concept of abstraction in C++, exploring

abstract classes and interfaces.
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What is Abstraction?

Hiding Complexity Focus on Behavior
Abstraction simplifies complex systems by hiding It emphasizes what an object does, rather than how it does it.
implementation details. You only interact with the essential It's like using a remote control without knowing how the TV

features. works.
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Importance of Abstraction

Code Reusability Flexibility

Abstraction allows you to Abstraction makes code more
create reusable components, adaptable to changes. You can
reducing code duplication and easily modify implementation
improving maintainability. details without affecting the

overall behavior.

Maintainability

By separating concerns, abstraction makes it easier to understand,

debug, and modify complex systems.
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Abstract Classes in C++

Blueprint

1 An abstract class acts as a blueprint for derived classes.

Incomplete Implementation

2 It defines the structure and behavior but doesn't provide all the details.

Cannot be Instantiated

3 You cannot create objects directly from an abstract class.
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Defining Abstract Classes

class Shape {
public:
virtual double area() = ©; // Pure virtual

function

};

The keyword abstract indicates an abstract class. Pure virtual functions are

declared but not defined.
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Puture Virnation

Pure Virtual Functions

virtual double area() = 0;

Pure virtual functions have no definition within the abstract class. Derived

classes must provide implementations.
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Interfaces in C++

class Drawable {
public:

virtual void draw() = 0;

Interfaces are like abstract classes that only contain pure virtual functions.

They define a contract that derived classes must adhere to.

interface
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Implementing Interfaces

concrete Jasp= (CLE)-hl)> class Circle : public Drawable {
contration(CR1l1l) - .
public:

void draw() override {

lledar: inpleremenaob: (llip, hiet'. .ribl=

imost: interrese())

inedar: inprience. ', imosta, 1 (> }
ST > }

imost: /mipgfinctoedcel, ried) ?

imbst.c_1lderloot water meion,.a. (1()>

imost: / inpoinedosloclllame. 1;

) -

// Implementation for drawing a circle

Concrete classes inherit from interfaces and provide implementations for the

interface methods. The override keyword ensures proper implementation.
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Benefits of Abstraction

Modularity Polymorphism

Abstraction promotes Abstraction enables

modularity, breaking down large polymorphism, allowing objects
programs into smaller, more of different classes to be treated
manageable components. in a uniform way.

Extensibility

Abstraction allows for easy extensibility, adding new functionalities

without modifying existing code.

Benefits Abatretion

~
Maintaling
AvpauTece
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Designing Abstract Classes and Interfaces

Identify Common Behavior

1
Determine the shared functionalities that different classes will have.
Define Abstract Class or Interface
2 Create an abstract class or interface with pure virtual functions for the common
behavior.
Implement Concrete Classes
3 Create concrete classes that inherit from the abstract class or

interface and provide implementations for the virtual

functions.
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Pointers and Memory
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Understanding Pointers: Fundamentals and Declarations

Pointer Definition Declaration Syntax

A pointer is a variable that stores a memory address, essentially

o , data_type *pointer name; // Declaring a
a location in memory where data is stored.

pointer to a data type

int *ptr; // Pointer to an

integer
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Pointer Arithmetic and Memory Addresses

Basic Operations Example

Pointers support arithmetic operations like addition and
int arr[5] = {1, 2, 3, 4, 5};

subtraction, allowing you to traverse memory locations.
int *ptr = arr;

ptr += 2; // Pointer now points to arr[2]
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Dynamic Memory Allocation with new and delete

Dynamic Allocation Deallocating Memory

The ‘'new operator allocates memory dynamically on the heap . .
int *ptr = new int;

at runtime, allowing for flexible memory management.
*ptr = 10; // Assign a value to the

allocated memory
delete ptr; // Deallocate the memory
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Dangling Pointers and Memory

Leaks

1  Dangling Pointers

A pointer that points to
memory that has been
deallocated is a dangling
pointer, leading to
unpredictable program

behavior.

Memory Leaks

Failure to deallocate
dynamically allocated
memory results in memory
leaks, gradually consuming

available memory and

potentially causing crashes.
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Smart Pointers: unique_ptr and shared ptr

unique_ptr shared_ptr
Provides exclusive ownership of a resource, ensuring that only Allows multiple pointers to share ownership of a resource using
one pointer can access it, preventing memory leaks and dangling reference counting, enabling safe sharing of dynamically

pointers. allocated memory.
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Comparison of Smart Pointers:
Advantages and Use Cases

Feature

Ownership

Use Case

unique_ptr

Exclusive

Single ownership,
resource

management

shared_ptr

Shared

Shared resources,
complex data

structures
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e
Best Practices

Memory Management

Pointer Safety and Best Practices

4: The menabesnmory manageternrprist and ellscit and onsect this hst ds
elecomsl of pount casl manectics or practies, supper, and od loced pointer.

Safe memory lication

SafewoverSafe; |nltla|lzatIOn OwnerShlp
ctadectior (1,90f) saft, —p
puse? (
Always initialize pointers before Clearly define pointer ownership
using them to avoid unexpected to prevent unintended access
Prepemolnter flemor behavior. and avoid memory leaks.
Proppe memory seation e
St atesh vee-assel and
thorgent an motogelssy
exjoy motedle. pottors °
o Deallocate
@ Popert Dedlattion .

Theere Inter prigition ponit Explicitly deallocate dynamically allocated memory using ‘delete” or

propey ead. <
Beallocation .
smart pointers to prevent memory leaks.

© Expecitealocations @ Forestalul placted dealction.

Incerenc ader naly prention @ Facalsty poreict echcricunt
arcallocations. cent.
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Pointer Visualization: Diagrams
and lllustrations

= s

Pointer Direction Memory Space

Arrows visually represent the Diagrams of memory blocks
direction a pointer points, indicating demonstrate how pointers interact
the memory location being with memory addresses and

referenced. allocated data.
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Conclusion and Q&A

Pointers are fundamental to C++ programming, providing powerful memory management capabilities. By understanding pointers,

dynamic memory allocation, and the advantages of smart pointers, you can write robust and efficient code. Any questions?
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Week 11

File Handling



https://gamma.app/?utm_source=made-with-gamma

File Handling in C++: Reading,
Writing, and Beyond

This presentation explores the fundamentals of file handling in C++, covering
essential techniques for reading, writing, and manipulating files, including

somEoesommmN binary files and random access.
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Understanding File Streams: ‘ifstream’, ofstream’, and
fstream’

Input File Streams (‘ifstream’) Output File Streams (‘ofstream’) File Streams (‘fstream’)

Used for reading data from a file. Used for both reading and writing to a

Used for writing data to a file. file.


https://gamma.app/?utm_source=made-with-gamma

: six lestiodk |

dershalt: ial 1/ [ —
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chamesfaclies ass, "tate- detroults desiget Commm

Reading Files: getline()
‘read() , and Handling File Errors

1 1. getline() 2 2. read()

Reads an entire line from the Reads a specified number of

file, including whitespace. bytes from the file.

3 3. Error Handling

Use “fail() or "bad()" to check for errors while reading.
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Writing Files: << operator, write() , and Controlling File
Output

<< operator ‘write() Controlling Output

Writes formatted data to the file (similar Writes a specified number of bytes of Use manipulators like "endl|” to control

to outputting to the console). data to the file. line breaks and formatting.
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Working with Binary Files:
‘open() with ‘ios::binary

Text 111

11101100
11131111

1111116 To work with binary files, use the “ios::binary™ flag when opening the file with
0 e g s 1 s s

mate ttrat hame a an ‘open() .

31171149
1018011)

toble abw tre, text 11111118 ofstream outfile("binary_data.bin", ios::binary);
ticngy, be toel batt T1TEELLS
kapp. thamiable lor's 11111110

foce fot a ragrtates. d 15 b 1 s S

Mere whilt, thome to

laegentle crochy, one

bafttfie bebnitg
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Reading and Writing Binary Data

Reading Binary Data Writing Binary Data

Use ‘read() to read binary data directly from the file. Use "write()" to write binary data directly to the file.
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Random File Access: ‘seekg()’,
'seekp()’, and ‘tellg()/ tellp()

1 1. seekg() 2 2. seekp()
Sets the file pointer for Sets the file pointer for
reading to a specific position. writing to a specific position.

3 3. tellg()/tellp()

Returns the current position of the file pointer for reading/writing.
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Practical Examples: File 1/O for
Text and Binary Data

Let's explore real-world scenarios where file handling is essential,

demonstrating code examples for working with text files and binary files.
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Diagram: C++ File Handling Process Flow

This diagram illustrates the typical process of file handling in C++, from opening and accessing files to reading, writing, and closing

them.
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Conclusion: Best Practices and Takeaways

1 1. File Error Handling 2 2. File Closing 3
Always check for errors after file Make sure to close files using
operations and handle them ‘close()" after you've finished using

appropriately. them.

3. File Permissions

Understand and manage file
permissions to ensure proper

access and security.
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Week 12

Templates
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Templates: Creating Generic
Functions and Classes

Templates are powerful tools in C++ that enable the creation of generic
functions and classes, allowing code to work with multiple data types without
requiring explicit specialization. This presentation will explore the
fundamentals of templates, their syntax, use cases, and the advantages they

offer.
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Introduction to Templates

Templates provide a mechanism for writing code that can operate on different data types without the need to write separate code for
each type. This makes code reusable and adaptable to different situations.

Function Templates Class Templates

Generic functions that can work with various data types. Generic classes that can hold different data types.
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Need for Templates

Before templates, developers had to write separate functions or classes for
each data type, leading to code duplication and maintenance difficulties.

Templates solve this by providing a single, generic definition.

1  Code Reusability 2  Flexibility and
Adaptability

Eliminates redundant code
for different data types. Allows code to work with
various data types without

modification.

3 Improved Maintainability

Simplifies updates and bug fixes across different data types.
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= Syntax and Declaration of
pu—__ Function Templates

L rage wererarvel) Function templates use the 'template' keyword followed by angle brackets (<

wally Sor (pde: I
r:.;;f crpr fartepile betd oy
# VS Jd )

ceag awnler Sutrests "N ) >) enclosing type parameters, which represent the data types that the
léfwte- bprt-aliiecd <wdes! the set In acing tw
templstee <[) g

function can handle.

oy L
oenitr [ exter iod gelerlier ths

i Rty oo coce template
T add(T a, T b) {

return a + b;
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Syntax and Declaration of Class
Templates

wil compllation obico!/ceclacts fo:
*laspllates for terstablsty;
‘template:
‘hntengolate laass daltt:
WHEEt @ DAckace: Class templates follow a similar syntax to function templates, using the
“tereater wilt for cond temmlet;
sanecherlatts lassst:

andt decciams class templat: '‘template' keyword and angle brackets to define type parameters that

cart emplates tempales rerviten oup olicbless:;

trenpllaes; represent the data types the class can hold.

cater cocacl-temple temple:
cart fare tenpless/Tere/cokt fext template:

‘tabes:
cclerCactlarterencis for thr templates;

vortetace angilemplated : template

“vimal ios
cohe Gokaoler

"tate tar "tar tempplet” ClaSS StaCk {
yes: .

"learly lextr terrange ofice clplwate:

text: — yooklceiate: pr\ivate .

templatace leays;
cart: lovtsele cost templatt; T *data .
clats bistental legac: J
reallow "template:

int top;
public:

// Methods for stack operations
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Template Type Parameters

Template Type the parparameters: s
e Type parameters are placeholders for specific data types. They can be any

= Peoplltinor i | LR valid C++ data type, such as int, double, char, or custom user-defined types.
5 R Tocllpate - L; Ank == U

T- Camie Lypest 5|1 ; Date = Syles 1 They are used to represent different data types in the template's definition.

T. % Foyres P\ong =)

template
T add(T a, U b) {

return a + b;
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Template Function Arguments

When calling a template function, the compiler automatically deduces the
data type of the arguments passed to the function. This allows for flexibility in

using the same template function with different data types.

int x = 5;
double y = 2.5;
int suml = add(x, y); // Compiles and works correctly
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Template Specialization

Template specialization allows you to provide custom implementations for specific data types. This is useful when the generic implementation
does not meet the requirements for a particular data type.

template<>

int add(int a, int b) {

return a * b; // Specialized implementation for int
}
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Advantages and Use Cases of
Templates

Templates provide significant advantages for C++ development, promoting code /—\dvanta es and templases

reusability, efficiency, and flexibility. ¥ Reoscate is lige locte,

¥ (Casseit Corfomere H\/l’res

¥ Cassalle lccleim late perscration Anvariaﬁns

Code Reusability

Reduces code duplication and

maintenance effort.

Efficiency

Eliminates the need for multiple
function or class definitions for

different data types.

Type Safety

Ensures type consistency and

prevents potential errors.

Genericity

Allows code to work with various

data types without modification.
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Template with bebock bank
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Diagram: Visual Representation of Templates

Templates can be visualized as a generic blueprint that can be instantiated with different data types, creating specialized versions of the function or class

for each specific type.

Template
1
int
pi
int version
double
3
double version
char
4

char version
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Week 13

Standard Template Library (STL)
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Standard Template Library (STL):
A Powerful C++ Tool

Dive into the powerful capabilities of the Standard Template Library (STL) in

C++ programming.



https://gamma.app/?utm_source=made-with-gamma

Why STL Matters: A Powerful C++ Toolkit

Pre-built Data Structures

STL provides a collection of pre-built and
highly optimized data structures, like

vectors, lists, and maps.

Generic Programming

STL allows you to write code that works
with any data type, promoting code
reusability and reducing development

time.

Efficient Algorithms

STL offers a wide range of algorithms for
sorting, searching, transforming, and
manipulating data, simplifying complex

operations.
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Vector: A Dynamically Resizable Array

Definition Initialization Common Operations

std: :vector<data_type> std: :vector<int> numbers = {1, push_back(), pop_back(), insert(), erase()
vector_name; 2, 3};
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Visualizing Vector Operations
© O

poP_back/LLI.m> ° prase (push imection((Z50)H // Example code:

sreetile aphlion(f.Cr3t= 0404
poP_back/ILt.m> porraton ()))> std: :vector<int> numbers = {1, 2, 3};

3
numbers.push back(4); // Adds 4 to the end

Erase:
‘ numbers.insert(numbers.begin() + 1, 5); // Inserts 5
style (; at index 1
Tyterriandetire pnaght: foretive weep, rech,retection,
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List: A Flexible Doubly-Linked List

Definition Initialization Common Operations

std::list<data type> list name; std::list<int> numbers = {1, 2, 3};push_front(), push_back(), insert(),

remove()
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Understanding List Operations

// Example code:

std::list<int> numbers = {1, 2, 3};
numbers.push_front(@); // Adds @ to the beginning
numbers.push _back(4); // Adds 4 to the end

numbers.insert(numbers.begin(), 5); // Inserts 5 at

> Alst a push jontent

the beginning

numbers.remove(2); // Removes all instances of 2

> List: jpush pointent
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Map: Key-Value Pair Storage

Definition Initialization Common Operations
std: :map<key type, value type> std: :map<std::string, int> insert(), find(), erase()
UETJIETER ages = {{"John", 30}, {"Jane",

25}};
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Navigating Map Operations

// Example code:
std: :map<std::string, int> ages = {{"John", 30},
{"Jane", 25}};
ages.insert({"Peter", 28}); // Adds a new key-value
pair
auto it = ages.find("John"); // Finds the key "John"
if (it != ages.end()) {

ages.erase(it); // Removes the entry with the key

"John"

}
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Week 14

Exception Handling
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Exception Handling in C++

Exception handling is a crucial part of C++ programming, allowing for graceful
error management and robust application development. This presentation
dives into the fundamentals of exception handling in C++, exploring the 'try,’

‘catch,' and 'throw' keywords, as well as the creation of custom exceptions.

R O
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Why Exception Handling?

Preventing Program Crashes Enhanced User Experience
Unhandled exceptions can lead to abrupt program termination, Exception handling allows for controlled error handling,
interrupting the flow of execution and potentially causing data providing informative messages and enabling programs to

loss. continue operation even in the face of errors.
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try-catch

The try-catch Block

Exception(;
f(
/ Exctch,Usl_);

(acmet: ()

f; moltoms;
Trye (try; tr\y {

Pacmall it ; , // Code that might throw an exception
Exctell fit; o v

} catch (const std::exception& e) {

Proeal6y; // Handle the exception

1 contrel();

2 headly; std::cerr << "Error: " << e.what() << std::endl;
3 cystch upcry;
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The throw Keyword

if (x == 0) {
throw std::runtime_error("Division by zero error!");

}
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Creating Custom Exception
Classes

class MyCustomException : public std::exception {
public:
const char* what() const noexcept override {

return "My custom exception occurred."”;
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}

rayitith:

Handling Multiple Exceptions

try {
// Code that might throw different exceptions

} catch (const std::runtime_error& e) {
// Handle runtime errors
} catch (const std::invalid argument& e) {

// Handle invalid arguments
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try try tach block

try ; arell, tisl ;

Nested try-catch Blocks

Y try {
try {
firi p; n2 // Inner code that might throw an exception
} catch (const std::exception& e) {

// Handle the exception at the inner level

}
} catch (const std::exception& e) {

*

// Handle the exception at the outer level

try tEx,;1,stell;sol.D;
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'tornal fil bllly

S
trrily The finally Block

try {
// Code that might throw an exception

} catch (const std::exception& e) {
// Handle the exception

catch:
fxiiting: f(tal..y() } finally {
)

// Cleanup code that will always execute
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3 3. Avoid Empty Catch Blocks

: sebplessccing, thes inght, an chiserengton thanetholo:
: copderspratconn woll, exepttor hactethtnt Lesten the le get.

: acodaclectionsutnews, proable for nareppert fortherovives. Always handle exceptions explicitly, even if it's to re-throw them for

: incpuctsootrescentor reppctiton save the prefely contios . .
: reppurtalonds, cohe, sepft asognlant. hlgher—level handllng-
amopursectical forse: proce tergant for ragl, escertallage

recuurcecodes. for each chter ges finadent, copples, saring

inpplt foccangetor Leanr perencententing expply.

secplepreacause fromthi undbestce thecenal propcts.

-
2
3
4
4
S:
4:
4:
4:
5

: foceive hackesst for sores forer bobblehecwittr the base.



https://gamma.app/?utm_source=made-with-gamma

Exception Handling Workflow

Try Block

1 Code that may throw exceptions

Throw Exception

2
If an error occurs
Catch Block
3
Handles the exception
Finally Block
4

Code that always executes
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Week 15

Advanced Concepts
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Introduction to Multiple Inheritance

Concept Example

Multiple inheritance allows a derived class to inherit properties Imagine a class "Car" that inherits from "Vehicle" and "Engine"

and methods from multiple base classes. classes. It combines features from both base classes.
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Diagram: Syntax for Multiple

Inheritance

class Car :

74 coc

Iy

public Vehicle, public Engine {

class members

-— ~—— ——

rabloe is..l> {
tamlimels
cubllc r=:a. {
routent( thels
precatl (fit,vit), r=s>
pplic lestftifiil, ctabit. le. 1>,
melscatt,isestisll, challaclil, tost.
pareent(classes
ppic is.sasfil;

paic lestisefill, cesplets);
pore isstibilll;
pec lestffrefill, irsation.);
parent=atriefliaclit,);
publit((iftitfil;,
rew ls=tisefill;
pec lests(tyftill, Ekrmse,);
instelhet();

) ;
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Benefits and Challenges of

Multiple Inheritance

1  Reusability

Avoids code duplication by
inheriting functionality from

multiple sources.

3 Diamond Problem

Can lead to ambiguity when
multiple base classes have

the same member name.

Flexibility

Allows for complex
relationships between
classes, providing more

options for code design.

Complexity

Can introduce challenges in
understanding and debugging
code due to intricate

inheritance structures.

¥ VAANTEZMICE (2 oerlergg)
§ frediom rentee))
[ CLABYE ngron

fure ¢3 caetetyl))
/ Lot Celtmeerisotend)
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(2] Nanrfiespace

Namespaces: Organizing Code and ;-
Avoiding Name Conflicts :

Purpose Example
o
L

Namespaces group related classes, Using the "std" namespace for
functions, and variables, providing standard library components helps
a logical structure for code and avoid conflicts with user-defined
preventing name collisions. names.

Benefit

Namespaces make code more readable, maintainable, and easier to

collaborate on.
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Diagram: Namespace
Declarations and Usage

namespace MyNamespace {

class MyClass {
// ... class members
}s
}
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Static Casting: Explicit Type
Conversion

—> )

Syntax Caution
static_cast<target_type>(source_val Static casts are not type-safe and can
ue) lead to runtime errors if the

conversion is invalid.

<[>

Example

Converting an integer to a floating-

point number.
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bast to = : ). Diagram: Static Cast Example

tirst sabts , 'tpri 0d Casics" {

wallrbe, art loctes i-1}

isteth sible cablr rutting >inel =

ly = {}

ty @ 'z int x = 10;

}

cotiatiie = double y = static cast(x);

Cootlores fotest on of contbodons eroros codes cosmpe that a static
errors.

}
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Dynamic Casting: Run-time Type Identification

Purpose Result
Dynamic casts are used to perform type conversions based on runtime Returns a pointer to the target type if successful, otherwise returns
type information, preventing errors. nullptr.
1 2 3
Syntax

dynamic_cast<target_type>(source_object)
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Diagram: Dynamic Cast Example

Base* basePtr = new Derived();

Derived* derivedPtr = dynamic_cast(basePtr);
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Week 16

Project Work
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Project Work: Planning, Building,
Testing, and Reviewing a Project

Welcome to this comprehensive guide on project work, covering essential
stages from planning to deployment and review. We'll explore best practices
for creating successful software projects using a library management system
as an example. Prepare to gain insights into the lifecycle of software

development.
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Introduction to Project Management

What is Project Management? Key Concepts

Project management is the process of planning, organizing, and Scope, schedule, budget, resources, risk, communication,

managing resources to achieve a specific goal. quality, and stakeholders are key concepts to consider.
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Planning Phase: Requirements
Gathering and Scope Definition

Understanding User Needs Defining Project Scope
Outlining the project's

Gathering detailed requirements boundaries, deliverables, and

through interviews, surveys, and milestones.

workshops.

Creating a Project Plan

Developing a timeline, budget, and resource allocation plan.
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Design Phase: Architectural Diagrams and UML Modeling

68 S O

System Architecture Database Design User Interface Design

Defining high-level components and their Modeling data structures and relationships Creating wireframes and prototypes for

interactions. for efficient storage and retrieval. user interaction.
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Development Phase: Coding and
Implementation in C++

1 Coding in C++: Choosing appropriate data structures,

algorithms, and libraries.

p) Unit Testing: Writing tests for individual functions and
modules.
3 Integration Testing: Testing the interaction between

different components.
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Testing Phase: Unit Testing, Integration
Testing, and End-to-End Testing

Unit Testing

1 Testing individual units of code in isolation.

Integration Testing

? Testing the interaction between different components.

End-to-End Testing

3 Testing the entire system from start to finish, simulating real-world scenarios.
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Deployment Phase: Releasing the Application

Build

1 Compiling and packaging the application.

Deploy

Installing the application on the server.

Test

Running tests in the production environment.
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Maintenance Phase: Bug Fixes and Feature Updates

Bug Fixes
1
Addressing reported bugs and defects.
Feature Updates
2
Adding new features and functionality based on user needs.
Security Patches
3

Implementing security updates and fixes.
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Project Review: Lessons Learned
and Continuous Improvement

1 2

Review Project Metrics Identify Lessons Learned
Analyze project performance, budget, Document best practices and areas for
and schedule. improvement.

3

Continuously Improve

Apply lessons learned to future projects.
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Diagram: Class Diagram for a Library Management System

)
7

Il
u

+isbn: string |

+title: string |

.... \

+author: string |

+availability: boolean |
e &
S -
| Member |
Hmmmmm e +
| +memberId: int

|
| +name: string |
|

| +address: string

ik

. 4“
z 5
|
5
v 4

mmmm e e eeooo +
fmmmmmm e mmeeooo +
| Loan |
T TP +
+loanId: int

| |
| +memberId: int |
| +isbn: string |
| |

+dueDate: Date
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Week 16

Revision and Final Assessment
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Revision and Final Assessment:
A Comprehensive Review

This presentation will provide a comprehensive overview of key C++ topics,
practical problem-solving techniques, and essential exam preparation

strategies.
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Introduction to C++ and its Core Features

History and Origins Key Features

C++ evolved from the C programming language. It was designed Key features include object-oriented programming (OOP),

to be a powerful and versatile language for system programming generic programming, and memory management capabilities.

and application development.
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Data Types, Variables, and

Operators

Basic Data Types

C++ supports various
fundamental data types like int,
float, char, bool, etc. Each type
represents a specific kind of

data.

Operators

Variable Declaration

Variables are used to store data
in memory. They are declared
using the data type followed by

the variable name.

Operators are symbols that perform specific operations on variables and

values. Examples include arithmetic, logical, and relational operators.
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Control Structures: Conditional
Statements and Loops

1 Conditional Statements: These allow the program to execute

different code blocks based on specific conditions.

p) Loops: Loops repeatedly execute a block of code until a

certain condition is met. This is useful for repetitive tasks.
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Arrays, Strings, and Pointers

Arrays Strings Pointers

Arrays store collections of elements of Strings are sequences of characters. C++ Pointers are variables that store memory
the same data type. They are used to provides built-in support for string addresses. They allow direct access to
efficiently store and access related data. manipulation, including concatenation data stored in memory, enhancing

and comparison. performance and flexibility.
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Object-Oriented Programming Concepts

Classes
1 Blueprints for creating objects, defining data members and member functions.
Objects
2
Instances of a class, containing data and behavior defined by the class.
Inheritance
3
Creating new classes based on existing ones, inheriting properties and behaviors.
Polymorphism
4
Allowing objects of different classes to be treated as objects of a common type.
Encapsulation
5

Bundling data and methods together, hiding implementation details.
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File I/0 and Exception Handling

File 1/0

1 Allows programs to interact with external files, reading data from them or writing data to them.

Exception Handling

Mechanisms for handling runtime errors and unexpected

events, ensuring program stability and robustness.
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Algorithm Analysis and Time
Complexity

O(n) O(log n)

Linear Logarithmic

Time complexity grows proportionally Time complexity increases slowly as

to the input size. input size increases.

O(n”2)

Quadratic

Time complexity grows quadratically

with the input size.
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Practical Problem Solving and Coding Exercises
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Code Examples Output Results

Practical code examples illustrating solutions to common Demonstration of program execution, displaying expected output

programming problems. and validating the solution.
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