e '\'n"l I
J T\ft:lll']u.\q 1

(EE gt
. flen P et
.\ubl'ﬁ"",‘"m,. i .",m‘l"" Y
DA s / ; R s ’ winnis D
. o 1 = -l : / A 2 S A e w‘lhﬂl\‘u
ol 143 B] T &y e 7/ L V5 SRR, i ,(,;ulﬂ\

om0 @ O @~ Object Oriented Programming

| { T gL A At &
kT Cqgum
) i Course Code: CSE-0613-2203
/4
: Md. Zahid Akon
i Lecturer
Department of CSE

https://gamma.app/?utm_source=made-with-gamma

Understand the
foundational concepts
and syntax of C++
programming.

Apply control structures,
functions, and modular
programming
techniques.

Implement object-
oriented programming
concepts like classes,
inheritance, and
polymorphism

CLO’'S

Utilize encapsulation,
abstraction, and dynamic
memory management
effectively.

Develop reusable and
efficient solutions using
templates, STL, and
exception handling.

Integrate all learned
concepts to design,
develop, and debug
complete projects.

Recommended Books

4 \

& v

1. E. Balagurusamy, ""Object-Oriented Programming with C++", Tata McGraw-
Hill (ISBN: 9781259029936)

2. Bjarne Stroustrup, '"The C++ Programming Language'', Addison-Wesley
(ISBN: 9780321563842)

3. Scott Meyers, ""Effective C++"", Addison-Wesley (ISBN: 9780321334879)

https://gamma.app/?utm_source=made-with-gamma

Q&A INCLASS ASSESSMENT

ASssessment

» Pattern

BRAIN STROMING PRACTICAL EXCERSISE

GROUP WORK

Wee
k No.
1

Course Plan

Topics and Key Outcomes

Introduction to C++: Basics of programming,
installing tools, writing the first program,
variables, and 1/0O.

Operators and Control Structures: Using
operators, if statements, and loops (for,
while).

Functions and Arrays: Creating functions,
passing values, recursion, and using 1D/2D
arrays.

Introduction to OOP: Difference between
procedural and object-oriented programming,
basic class and object.

Classes and Objects: Constructors, destructors,
member functions, and this pointer.

Inheritance: Base/derived classes, types of

inheritance, and constructor/destructor chaining.

Polymorphism: Function overloading, virtual
functions, abstract classes, and dynamic method
dispatch.

Encapsulation: Grouping data and controlling
access with private, protected, and public
modifiers.

Abstraction: Hiding implementation details and
designing abstract classes and interfaces.

Teaching-Learning Strategies

Assessment Strategies

Lecture, multimedia, hands-on practice Feedback, Q&A, simple

Lecture, practical examples

Lecture, hands-on practice

Lecture, group discussions

Lecture, problem-solving sessions
Lecture, multimedia

Lecture, group discussions

Lecture, hands-on practice

Lecture, hands-on practice

quiz

Feedback, Q&A, short
quiz

Midterm Quiz #1,
practice problems

Feedback, Q&A

Case Study #1,
Assignment #1
Feedback, Q&A,
discussions
Feedback, Q&A,
examples

Feedback, Q&A, quizzes

Feedback, Q&A, quizzes

Alignment to
CLO
CLO1

CLO2

CLO2

CLO3

CLO3
CLO4

CLO4

CLO3

CLO3

https://gamma.app/?utm_source=made-with-gamma

10

11

12

13

14

15

16

17

Course Plan

Pointers and Memory: Working with pointers,
new/delete, and smart pointers.

Lecture, multimedia

File Handling: Reading/writing files, working with Lecture, practical examples

binary files, and random file access.

Templates: Creating generic functions and classes

using templates.

Standard Template Library (STL): Using
vectors, lists, maps, and common algorithms like
sort and £ind.

Exception Handling: Handling errors with try,

catch, and throw; creating custom exceptions.

Advanced Concepts: Multiple inheritance,
namespaces, and typecasting (dynamic cast,
static cast).

Project Work: Planning, building, testing, and
reviewing a project like Library Management or
Banking System.

Revision and Final Assessment: Review of all
topics, practical problems, and final exams.

Lecture, group exercises

Lecture, hands-on practice

Lecture, practical examples

Lecture, hands-on exercises

Group work, instructor
guidance

Lecture, problem-solving
sessions

Feedback, Q&A, simple
assignments

Feedback, Q&A

Feedback, short quiz

Feedback, assignments

Feedback, Q&A

Feedback, practice problems

Project reviews, peer
evaluations

Final written and practical
exams

CLO3

CLO3

CLO4

CLO4

CLO3

CLO4

CLO5

CLO5

https://gamma.app/?utm_source=made-with-gamma

Week 1

Introduction to C++

https://gamma.app/?utm_source=made-with-gamma

Introduction to C++

Welcome to your journey into the world of C++ programming. This
presentation provides a foundation in the fundamental concepts that will

empower you to build software and solve real-world problems.

https://gamma.app/?utm_source=made-with-gamma

Installing C++ Tools and IDE

Compiler IDE
A compiler translates your C++ code into machine-readable An Integrated Development Environment (IDE) offers features
instructions. Popular compilers include g++ and clang. like code editing, debugging, and project management. Common

IDEs include Visual Studio Code, Code::Blocks, and CLion.

https://gamma.app/?utm_source=made-with-gamma

Writing Your First C++ Program

Tant Teallat
g eleciat / = alaiple anethla)

¥ simplle C+ simple = actimplatio)

- LeT s
e & sasetailie complectis)

S il ayotertam (s TaP Fort woste vie)

simpile proflecile andianeti\Q)

Qe A L (tattae)) domsiect9)

Code Output

#include Hello, World!

using namespace std;

int main() {
cout << "Hello,
World!";

return 0;

https://gamma.app/?utm_source=made-with-gamma

Debitis

Variables and Data Types

—
H# (D Z =
int float, double char string
Integer values, whole Floating-point numbers, with Single characters, e.g., 'A', '?', Sequences of characters, e.g.,

numbers, e.g., 10, -5, O. decimal values, e.g., 3.14, -2.5. '%'. "Hello", "C++".

https://gamma.app/?utm_source=made-with-gamma

Arithmetic Operations and
Expressions

y(+2x)

6
23x2*2 +15=1In2"= = (2| =xn)(c++4 1 2

2xXx32 + # -1s5 =2 = [45) = = (L]ox+(+17)
2xx1*2 +In*=1/§% x $8==1y)(c+54

Addition Subtraction
«2x5 + = | x4n2 2)= = x X+70 ,
2X22X + = | X4n%= & 2x+(0) A + Adding two numbers, e.g., 5+ 3 = 8.
=2x24+50 [-I'G—BT,,XX"*SZ g

Subtracting one number from another,

218 e.g. 10-7=3.
Ex+212 + = (4§2-18x = = 11/(c +215) g

O e -

3 4

Multiplication Division
Multiplying two numbers, e.g., 2 * 6 =

Dividing one number by another, e.g.,
12.

15/5=3.

https://gamma.app/?utm_source=made-with-gamma

User Input and Output (1/0)

Input Output
#include Enter your age: 25
using namespace std; You are 25 years old.

int main() {

int age;

cout << "Enter your age: ";

cin >> age;

cout << "You are " << age << " years

old.";

return 0;

https://gamma.app/?utm_source=made-with-gamma

T e N amw - -a'lu\' SN - ‘.’-us'

Anciactleel). Yocrasigalcel);
Accraefvick;.

Pacririgmal;, Faxt.ifignt;,

Acciector(). Flaclector(;

Control Structures: Conditional Statements

if else if else
Executes a block of code if a condition is Executes a block of code if the previous if Executes a block of code if all previous if
true. condition is false and a new condition is and else if conditions are false.

true.

https://gamma.app/?utm_source=made-with-gamma

Control Structures: Loops

1 While lowhite loops_levifat
Executes a block of code repeatedly as long as a condition is
true.
fjulsmate_lus, lecid
2 for forrey _tripcle:

Executes a block of code a specified number of times.

3 do-while

Executes a block of code at least once, and then repeatedly

as long as a condition is true.

https://gamma.app/?utm_source=made-with-gamma

Functions and Subroutines

Function Definition

1
A function is a block of code that performs a specific task.
Function Call
2
The main program calls a function to execute its code.
Parameters
3
Functions can receive input values through parameters.
Return Value
4

Functions can return a value back to the calling program.

https://gamma.app/?utm_source=made-with-gamma

Conclusion and Next Steps

Congratulations! You've mastered the fundamentals of C++ programming.
Now explore more advanced concepts such as classes, objects, and data
structures. Practice regularly, experiment with new features, and build your

skills to become a confident C++ developer.

https://gamma.app/?utm_source=made-with-gamma

Week 2
Operators and Control Structures in C++

Introduction to OOP

https://gamma.app/?utm_source=made-with-gamma

Operators and Control
Structures in C++

This presentation will explore the fundamentals of C++ operators and control

structures, essential building blocks for programming.

BT
|
K |
4 :
o 11
" M- W
v ‘(I1RRE
R\ \)
) A \

\§

https://gamma.app/?utm_source=made-with-gamma

Types of Operators in C++

Arithmetic Operators Relational Operators Logical Operators Bitwise Operators

Used for basic mathematical Used for comparing values. Used for combining logical Used for manipulating

operations. expressions. individual bits.

https://gamma.app/?utm_source=made-with-gamma

Arithmetic Operators

Addition (+) Subtraction (-) Multiplication (*)

Adds two operands. Subtracts the second operand from Multiplies two operands.
the first.

Division (/) Modulo (%)

Divides the first operand by the second. Returns the remainder of a division.

https://gamma.app/?utm_source=made-with-gamma

Relation Operator

Relational Operators

> <

greated than crjox

Greater Than (>) Less Than (<)

Erguall to a:
Lespalf cibe
oarduct. (lone-T= -
Checks if the first operand is greater Checks if the first operand is less clochacions = reaiar-ity
less. 10); e
than the second. than the second.
—— ¢ lessel thal % Equall to:
Requiald Ti.\a-n: Recprialt than fy-1si:
{::::i:gt:::\;,nlvc'orl_u:\?i)!)-'lsle): :gi:a‘f‘;g:ge;:_'i;;]”

lest-Feallingarsesi;
testaleacting, letlerppraseff;
fress: ((0-1)):

race, thi):

Equal To (==) Not Equal To (!=)

Checks if two operands are equal. Checks if two operands are not
Not equl its:

Rrcopredtlisetf(r=3))):

lectst tetilley lasssiporaistf);
tatt: Weciiets/;
tecttt tasil—eatilerpprasesf):
frces: for=13);:

equal.

https://gamma.app/?utm_source=made-with-gamma

Conleer :tage(alegelog() Confeer :tacrlerlegalog()

Chers/1Sgg:laggAltl: Cherelagerilliislef:
ssare:
- Free/LIR(PR.cag756f(); - Fore/1200R.com75¢();

Uonsyled, o07fnAT1latecant Connyledt 007Tnu}. i3Sccent
- cace/laagecanl(16) 'P?) - core(linggranlllQ) 'P®)

Logical Operators

Logical AND (&&) Logical NOT (!)
Returns true if both operands are true. Reverses the logical state of an operand.
1 2 3
Logical OR (| |)

Returns true if at least one operand is true.

https://gamma.app/?utm_source=made-with-gamma

If Statements in C++

Condition
1
True
2
Execute code block.
False
3

Skip code block.

An if statement executes a code block if a condition is true. If false, the block is skipped.

https://gamma.app/?utm_source=made-with-gamma

If-Else Statements

1 Condition
True
pi
Execute code block 1.
False
3

Execute code block 2.

If the condition is true, the first code block is executed; otherwise, the second code block is executed.

https://gamma.app/?utm_source=made-with-gamma

For Loops in C++

1 2

Initialization Condition

3

Increment

A for loop executes a block of code repeatedly, based on an initialization,

condition, and increment/decrement.

https://gamma.app/?utm_source=made-with-gamma

' Cotle (steps)

Conditon:

P ...

While Loops in C++

Condition True False

Execute code block. Exit loop.

A while loop executes a block of code repeatedly as long as a condition remains true. Once the condition becomes false, the loop terminates.

https://gamma.app/?utm_source=made-with-gamma

Conclusion and Key Takeaways

Operators and control structures form the core of programming logic. By
mastering these concepts, you can create dynamic and efficient C++
programs. Continue to explore and experiment with these fundamental

building blocks to enhance your programming skills.

https://gamma.app/?utm_source=made-with-gamma

Week 3

Functions and Arrays in C++

https://gamma.app/?utm_source=made-with-gamma

camticol afertiandl))
aley;

hatsts kfiving are 5

- . ving loy orver rEAss);
colleestital Frov(tinng

catitets cplioy (0c'\a99);

omdw-r and arrzay for Celypaic rancl))

entlemlen.ll: (atters ond stat: jartiz «ftlar)
guacrizelia

Cordiolle srww » 1)

csmelestipaiel/ (entt), (uctinrvl)
exhntanis.

¢ etloygads (13E5 elatiap)
- Tk gpices prrzottisioved fnloping ratunde taly;

cvegetlast eiley);
II sameactoteetlar camicl; (wctsolly

CAMUER1ERERWOY

cemzetzexriieal (onttl, Cuntiral)

chnesiioneilar 1alsl))2:

comae lITosatael (S1ter (Lictad)

ar aneal:

* carcteettor (forigm tomecle Celan: staly;
CRAISS 1IN0 Gsl L)

) ceme((temla
'i serteal feact getriast ofte cyr ~aydaried),
d espactierc (corcton~i wlor cintionance tie 1ir))
mc (mumuci.. o3 (melltiol)

3)

L
|| \

—

A

A

Functions and Arrays in C++

This presentation explores fundamental concepts of functions and arrays in

C++, providing a structured overview and practical examples.

https://gamma.app/?utm_source=made-with-gamma

Understanding Functions

Functions are reusable blocks of code that perform specific

tasks.
They enhance code organization and readability.

They promote modularity and code reusability.

<bethmkt (ischuton calessta)
of the out to the
tupembleceCuntescatile :)
net thr;
phalla velsult scude>
(=
ptesdacctalt=.call (1+7?)

chan-set syxethol)

chiul estal, #.cat:=ttefs
and rent lig'at strit 11+?)
ctrantecicher

)

(eot-mlasethusbachG@e ther)

https://gamma.app/?utm_source=made-with-gamma

Defining and Calling Functions

Defining a function involves specifying its name, return type, and
int sum(int a, int b) {
parameters.
return a + b;

Calling a function executes its code block. }

int main() {
int result = sum(5, 3);

cout << "Sum: << result;

return 9;

https://gamma.app/?utm_source=made-with-gamma

Passing Arguments to Functions

Arguments are values passed to a function during its call.

They are used as input for the function's operations.

trynedapy:grmpmns

paribntt:;t()); (burbutt));

https://gamma.app/?utm_source=made-with-gamma

Returning Values from Functions

Functions can return a value using the return statement.

The returned value can be used in the calling code.

funcion:

https://gamma.app/?utm_source=made-with-gamma

Accessing Array Elements

Arrays store collections of elements of the same data type.
int numbers[5] = {10, 20, 30, 40, 50};

Elements are accessed using their index, starting from 0. cout << "Element at index 2: <<

numbers[2];

https://gamma.app/?utm_source=made-with-gamma

2D Arrays: Representing Tabular Data

2D arrays are used for storing tabular data, such as matrices or

grids.

They consist of rows and columns, accessed using two indices.

NRENRER FEeeeEs
g L LN [l L L
-BREREE FRENeNs
a4 \
FEEFR @ @ eec

| |
A ~
4 ‘; ‘
05 1 |

’ ‘
29 | \ {.
=l —) —)

g

https://gamma.app/?utm_source=made-with-gamma

Function Parameters: Passing by Value vs. Reference

Passing by value creates a copy of the argument, preventing

modification of the original.

pas-by-reference

Passing by reference allows direct modification of the original

argument.

https://gamma.app/?utm_source=made-with-gamma

Function Overloading: Multiple Functions with the Same
Name

Function overloading allows defining multiple functions with the

Function Oveloading in C++

same name.
The compiler selects the correct function based on the Pree. Iption pasv. same
Pamoken = (lid = bbxt))) functior of .delect of
argument types. (iockaj! = (1:d = htuh)) plaranetiomllyypes.
cohaj! = (1:d = btuh))
cohaj! = (1:d = hbxt))) Cuc-cisced)
Cne-ontohi)
Parnoken = (lid = bluxt))
(iochaj! = (1:d = bluh)) Cne-catyat)
cohaj! = (1:d = bbxt))) One-onsthe)

Parnoken = (1:d = kbxt))) Cuc-cucbed)
cohaj! = (1:d = bluxt)) Cse-onache)

https://gamma.app/?utm_source=made-with-gamma

Defining Overloaded Functions

Overloaded functions have the same name but different
, int sum(int a, int b) {
parameter lists.

return a + b;
They enhance code reusability by providing different ways to }

achieve the same result.

double sum(double a, double b) {

return a + b;

https://gamma.app/?utm_source=made-with-gamma

Week 4

Introduction to OOP

https://gamma.app/?utm_source=made-with-gamma

“4dVLILLILI L1111V1IVLI111\
111101101101011110000101¢
1111010011601011110111111
1010110110 111011011
1111001111 10]
10110

o) 1101]

Introduction to Object-Oriented
Programming

This presentation explores the fundamental concepts of Object-Oriented
Programming (OOP), a powerful programming paradigm that provides a

structured approach to software development.

11011071
101107107 1/————

4 >

https://gamma.app/?utm_source=made-with-gamma

Procedural vs. Object-Oriented Programming

Procedural Programming Object-Oriented Programming

Focuses on procedures or functions. Data and operations are Emphasizes objects that encapsulate data and behavior. Objects

separate. Data is passed to functions for processing. interact with each other through methods.

https://gamma.app/?utm_source=made-with-gamma

Key Concepts of OOP: Classes

and Objects

1 Class

A blueprint or template that
defines the structure and

behavior of an object.

Object

An instance of a class,
containing specific data

values and methods.

https://gamma.app/?utm_source=made-with-gamma

Defining a Class in C++

class Dog {
public:
string name;
int age;
void bark() {
cout << "Woof!" << endl;

s

https://gamma.app/?utm_source=made-with-gamma

Creating Objects from a Class

Dog myDog;

myDog.name = "Buddy";
myDog.age = 3;
myDog.bark();

https://gamma.app/?utm_source=made-with-gamma

n
| -
Q

O
&
)
=
n
n

e
O
o]0)
=
N
n
Q
O
&)
<

class Car {

public:

string model;

int year;
void start() {

J

cout << "Engine started." << endl;

};

int main() {

Car myCar;

myCar.model = "Ford Mustang”;

2023;

myCar.start();

myCar.year

return 0;

https://gamma.app/?utm_source=made-with-gamma

Constructors and Destructors

class Student {
public:
string name;
int rollNo;
Student(string n, int r) {
name = n;
rollNo = r;
}
~Student() {

cout << "Destructor called for

};

<< name << endl;

D AN

Student

Tyste"G Ciay

C
Onstructong deestrges
WCtal)

Coetiert -3

e .
ATtuxl dogy SVEiie togrerita) opaziay)

clide deizies; ffe sulemt <)

cr Satall};
depeller <)

copsctastiove class;
its, woller =)

clest (vepsals 10eskc@)
flept (eacher et¥
wlgligr et

el
ted of wilell)s

https://gamma.app/?utm_source=made-with-gamma

Inheritance: Extending Classes

class Animal {
public:
void eat() {

cout << "Animal eating." << endl;

}
i

class Dog : public Animal {
public:
void bark() {
cout << "Woof!" << endl;

}
Jir

https://gamma.app/?utm_source=made-with-gamma

1SS1ISS 1IN

| | class Circle : public Shape {
public:
+ + void draw() {
cout << "Drawing a circle." << endl;

}
o

Polymorphism: Overriding Methods

class Shape {
public:

virtual void draw() = 0;

b g

Square

draw

draw

class Square : public Shape {
public:
void draw() {

cout << "Drawing a square." << endl;

s

https://gamma.app/?utm_source=made-with-gamma

Conclusion and Key Takeaways

OOP promotes code reusability, modularity, and maintainability.
Understanding classes, objects, inheritance, and polymorphism empowers

you to build complex and robust software applications.

https://gamma.app/?utm_source=made-with-gamma

Week 5

Classes and Objects

https://gamma.app/?utm_source=made-with-gamma

Classes and Objects:
Constructors, Destructors,
Member Functions, and this
Pointer

Explore the fundamental building blocks of object-oriented programming in
C++, gaining a deep understanding of classes, objects, and their associated

concepts.

https://gamma.app/?utm_source=made-with-gamma

Introduction to Classes and Objects

Classes Objects

Blueprints or templates that define the structure and behavior Instances of a class, representing real-world entities. They hold

of objects. They encapsulate data and functions. data and can execute the class's functions.

https://gamma.app/?utm_source=made-with-gamma

Defining a Class

paddo coon ecletil
S
wrrient
nose <2 Iay #aslet\))
verilen the volttih))
cot the Testicing; ciartiices)
<na:
Veavapislt Me tobile vedl=lig:
ar ofin:
e vees ciislie Qelkp:
e e W dseler)
e aif1oas af ctedizef ctmtilern:
on e tatcat estel zol3
e dppitivets Cortectlonilingr:

class Car {

-» Chuphse tieteil: = auslig 1o tysUieatior up selior furies tad \in factin)

°
blic:
) Cetlor yeboe o ceapile; p u 1 C :
:o d‘";;:«’; ‘::bgn't:::v '\:;nﬁ {m puse the fattiny wilete, CHECT cophs tnen Editgl)
S & ~
(Z.v‘nncs '_':{"?”'
s AR cting molen chimg et ecfariesl)
Qe leconss b siswes LY
(armrpt 11DEC)
ot Ihmter '8 Solaisitier (Ll
”’:lgn- carcats Jisle detlly)
455 capilrion)

string brand;

er le

string model;

wn the egert Leetlipds Ceca YAkt ethes (0

5 = aoplst Do desesl flay cld

o
o .
<6WM¥&A:;;; (¢zwat)) wa 18 agpalst fer ecelltene/) l n t ye a r\)

qeld lugler £9€ AL > 1 {attertwi)
e, e Seine 867] il itlicla Ty €L Foer)
M*W‘:?;‘:m—&u oo tafuel Lorivets, : pai - o d h
farse cral = C
s S void showCar() {

cout << "Brand: << brand << endl;

cout << "Model: " << model << endl;

cout << "Year: << year << endl;

https://gamma.app/?utm_source=made-with-gamma

Constructors and Destructors

1 Constructors

Special member functions
that initialize objects when

they are created. They have

the same name as the class.

Destructors

Special member functions
that clean up resources when
objects are destroyed. They
have the same name as the

class prefixed with a tilde (~).

G

Coneset+
Deestuctor

https://gamma.app/?utm_source=made-with-gamma

® @ ® Type - yacing / Step
Wrechouse: clas@preetition

{

Z

3 Abist to class defuion

7 member Loam for tondastatle/Macengbuer_lite

2 {

9 member:: functior:/spils: member hount” setyler: tocsign_tite;

{ fmettate: "'ite_econdlangr in fiantrall, senibe;
conoction iits,wenelty leant/all, bull, {
mock; member spent: scack sevioll;
matk; membter asunecs bull;
mock, wembler.vact: stile_compraualer belt;
)

orly: tre_poljerssons relstavel sentle)
<5

<tnaning :ston/inpracet(entle;
<lonty_loose>

Member Functions

class Car {

public:
Car(string b, string m, int y) { // Constructor
brand = b;
model = m;
year = y;

}

void showCar() { // Member function
cout << "Brand: " << brand << endl;
cout << "Model: " << model << endl;

cout << "Year: << year << endl;

https://gamma.app/?utm_source=made-with-gamma

Priyvate Public

{ prott() {):

awd =1 L Fe

Access Specifiers: public, private, protected

public private protected

Members accessible from anywhere, Members accessible only within the Members accessible within the class

including outside the class. class itself. and its derived classes.

https://gamma.app/?utm_source=made-with-gamma

The this Pointer
) />

Context Purpose

A special pointer available inside Used to differentiate between
member functions that points to the member variables and local variables

current object. with the same name.

https://gamma.app/?utm_source=made-with-gamma

Class Inheritance

1 Base Class

Base Class

Innertions
Class

The parent class from which other classes inherit properties

and behaviors.

}
Burstione Ractiont
Classs Lass
2 Derived Class
The child class that inherits from the base class, extending

its fu nctiona“ty, Pericment Pradand Chidriant
Classe |asst Classe
3 Reusability i E g

Inheritance promotes code reuse by allowing derived classes

to use the base class's members.

https://gamma.app/?utm_source=made-with-gamma

2 paselact istallunction <- camnber:
3 vira' cluns; derise: deptal (assel) >
4 empl/berrible" = >
4 noptlor"itstall €lo™ sunlast virtal (eselitcal(=1t)
5 aciel=>
‘ 10 classet itatt ion" = <= derise: virtal (esse]) ilt>>

Polymorphism and Virtual Functions

Virtual Functions

1 Member functions declared with the keyword "virtual" in the base class.
Overriding

2 Derived classes can provide their own implementations of virtual functions, allowing for dynamic polymorphism.
Late Binding

3 The actual function to be called is determined at runtime, based on the object type.

https://gamma.app/?utm_source=made-with-gamma

Code Examples and Live Demonstrations

Let's dive into practical examples and live demonstrations to solidify your understanding of these essential C++ concepts.

https://gamma.app/?utm_source=made-with-gamma

Week 6

Inheritance

https://gamma.app/?utm_source=made-with-gamma

Inheritance in C++

Inheritance is a powerful C++ concept that enables code reusability and
modularity by creating relationships between classes. In this presentation, we

will explore inheritance basics, its various types, and key aspects like

constructor/destructor chaining and polymorphism.

https://gamma.app/?utm_source=made-with-gamma

Introduction to Inheritance: Defining Base and Derived
Classes

Base Class Derived Class

The parent class that defines common characteristics and A class that inherits from a base class, gaining its attributes and

functions. In our example, 'Animal’ is the base class. functions. 'Dog' is a derived class inheriting from 'Animal’.

https://gamma.app/?utm_source=made-with-gamma

Mull(ple Indertance

Twp Classes

oft
Pellacee

Twp 2 Classes
of ull
Toptherrelacks

Phirreryhica L

Inhertance
Therrorchical
Inhertance

Types of Inheritance

Single Inheritance

A single derived class inherits from
one base class. For example, 'Dog'

inherits from 'Animal’.

Hierarchical Inheritance

Multiple derived classes inherit from a
single base class. For example, 'Dog’,
'Cat’, and 'Bird' could all inherit from

'"Animal’.

Multiple Inheritance

A derived class inherits from multiple
base classes. For example, a 'Car’ class
might inherit from 'Vehicle' and

'‘Engine’ classes.

Multilevel Inheritance

A derived class inherits from a base
class, and another derived class
inherits from the first derived class.
For example, a 'SportCar' class could
inherit from 'Car’, which inherits from

'Vehicle'.

https://gamma.app/?utm_source=made-with-gamma

Inheritance and Access Specifiers

Public Protected Private
Members declared public in the base Members declared protected can be Members declared private are not
class can be accessed directly by derived accessed by derived classes, but not by accessible by derived classes or external

classes and external code. external code. code.

https://gamma.app/?utm_source=made-with-gamma

N =

DESTRICTION

Constructors and Destructors in
Inheritance

1

Constructor Chaining

Derived class constructors
automatically call the base

class constructor.

Destructor Execution
Order

Destructors are called in the
reverse order of constructor

execution.

https://gamma.app/?utm_source=made-with-gamma

Diagram: Visualizing Inheritance Relationships and
Hierarchy

Animal

1 Base Class

Dog

Derived Class

Cat

Derived Class

https://gamma.app/?utm_source=made-with-gamma

clases: "width- 4"/ = (")
cobfacioher a 1 }
»shape
fectanagler ="with {6+ 1ithh, } 1 }
terneer: 4y=-dake)
pressis class
cobelder: bucstho((+ (astrienl))
foccbete :'setlan;
furengle.:'relent(=1; {)

foreptenl.= sape:
corthet.= frort

foprethanle = ticht", height. > (retrth(];

dasn.- extecirent;)

fineehsace(" = +)

shape: =1}
besparch(= >
lnshtee"=cberstty{ =
besptArnt=obersitt+1())";
treed-funcoction (tin/s=)

t/e. "thsplal}
);

Inheritance in Code: Examples and Syntax

#tinclude <iostream>

class Shape {
public:
Shape(int sides) : sides(sides) {}

void printSides() const { std::cout << "Sides: "

protected:
int sides;

};

class Triangle : public Shape {
public:
Triangle() : Shape(3) {}

<< sides << std::endl; }

void printType() const { std::cout << "Shape: Triangle" << std::endl; }

};

int main() {
Triangle t;
t.printType();
t.printSides(); // Accessing protected member

return 0;

https://gamma.app/?utm_source=made-with-gamma

base classptirt

Polymorphism and Virtual Functions in Inheritance

(D

Runtime Polymorphism Virtual Functions

The ability to call different functions based on the object type at Functions declared with the 'virtual' keyword in the base class

runtime. allow for runtime polymorphism.

https://gamma.app/?utm_source=made-with-gamma

Advantages and Use Cases of
Inheritance in C++

1 2

Code Reusability Modularity
Reduce duplicate code by inheriting Create independent and reusable code
from existing classes. modules.

3

Extensibility

Easily add new features to existing

classes.

https://gamma.app/?utm_source=made-with-gamma

Conclusion: Key Takeaways and
Further Exploration

Inheritance is a cornerstone of object-oriented programming in C++. It
promotes code reusability, modularity, and extensibility, making code more
organized and efficient. Dive deeper into inheritance topics like abstract

classes, virtual destructors, and multiple inheritance to master its full

potential. g S

https://gamma.app/?utm_source=made-with-gamma

Week 7

Polymorphism

https://gamma.app/?utm_source=made-with-gamma

Polymorphism in C++

Polymorphism, a core concept in object-oriented programming, empowers
code to adapt to different situations and types of objects. This presentation
explores the key facets of polymorphism in C++: function overloading, virtual

functions, abstract classes, and dynamic method dispatch.

https://gamma.app/?utm_source=made-with-gamma

Function Overloading

Same Name, Different Parameters

Function overloading allows defining multiple functions with the
same name but distinct parameter lists. This enables using a

single function name for diverse functionalities.

Compile-Time Resolution

The C++ compiler determines the appropriate function based on

the parameters provided during the function call.

https://gamma.app/?utm_source=made-with-gamma

L | N N S ANV S NNVNAESN (48t v o viéa s 7 SN N ‘ A AN w‘w\b‘l '\m

27 sudce i belldna:;

28 chdlnet to talde rood: dar in (ypactels = ,,il\}é)‘”.-
14 faduce liesttone: reloll;
26 ice (estiounsetdl+);;

Function Overloading Example

#include <iostream>
using namespace std;

int add(int x, int y) {
return x + y;

}

double add(double x, double y) {

return x + y;

}

int main() {
int resultl = add(2, 3); // Calls add(int, int)
double result2 = add(2.5, 3.5); // Calls add(double, double)

cout << "resultl: " << resultl << endl;
cout << "result2: " << result2 << endl;
return 0;

https://gamma.app/?utm_source=made-with-gamma

Virtual Functions

1 Base Class Function 2 Runtime Polymorphism

Declaring a function as

virtual in the base class Virtual functions enable
enables derived classes to runtime polymorphism,
provide their own where the specific function
implementations. to execute is determined at
runtime. Tiae Base Class Virtual function

3 Overriding Mechanism

Derived classes can override virtual functions, providing unique

behavior for their objects.

https://gamma.app/?utm_source=made-with-gamma

virtual fomection:

Virtual Functions Example

#include <iostream>
using namespace std;

class Shape {
public:
virtual void draw() {
cout << "Drawing a generic shape" << endl;
}
}s

class Circle : public Shape {
public:
void draw() {
cout << "Drawing a circle" << endl;
}
}s

int main() {
Shape* shapel = new Shape();
Shape* shape2 = new Circle();
shapel->draw(); // Calls Shape::draw()
shape2->draw(); // Calls Circle::draw()

return 0;

https://gamma.app/?utm_source=made-with-gamma

Abstract Classes

». \’\‘ ‘

.

1 Uninstantiable Base p) Pure Virtual Functions
Class

Abstract classes contain pure

v 7 .\

2.] 2\ ¥/
e)
- -

* } £ Abstract classes cannot be virtual functions, which must
(,j ih
f A N instantiated, acting as be implemented by derived
| | .J y -’ . .
h(3 - ;} blueprints for derived classes.
i }‘:3 ‘ ,:.’\
/; il <, s 4 SR classes.
& || 7o g (OB XS5 20 |7y

-
r --/.f“\ W7 W o~
S X '?é:‘f" [y —
W —)
s

< LN (=
A’ o >

s =

3 Encapsulation of Behavior

Abstract classes enforce a common interface and ensure derived

classes implement specific behaviors.

https://gamma.app/?utm_source=made-with-gamma

Abstract Classes Example

#include <iostream>

using namespace std;
Ad that sttabrr=ineef:

Ad (talliptoan-tystur: "letntriog)
class Animal {

1 Ad cut_rotton> .
p) Ad ffut retabrr=stemt in (aclerfeclon: public:
3 A5 "Ferlaclodam= peoblfr= faction: virtual void makeSound() = @; // Pure virtual function
3 A6 tnt recadle= attef bad: o
4 /> tell testrr=iotion:
4 /6 tnt retaure= rtatl restcherlog: . .
> /> class Dog : public Animal {
.8 public:
. . %
0 / ftut recadl<-pastatlc-(atorericion: vetle] Eiesetiel)
5 “Facleclodaminnstertiog: cout << "Woof!" << endl;
4 /] "Potal> balog" }
9 /> cut Fecablr= tacly restamction: };
4 Costectoom eige iitlleareile;
7 Pur Babse blass tut adizet). Posslats: scylfinction: int main() {
8 Pespertenten™> // Animal animal; // Error: Cannot instantiate abstract class
) Dog dog;
dog.makeSound();

return 0;

https://gamma.app/?utm_source=made-with-gamma

Dynamic Method Dispatch

Runtime Resolution

1
Virtual Function Table (vtable)
v Dynamic method dispatch utilizes a virtual function table (vtable) to determine
the correct function implementation based on the object's type at runtime.
Polymorphic Behavior
3 This process enables polymorphic behavior, where the same code can

interact with objects of different derived classes in a consistent way.

https://gamma.app/?utm_source=made-with-gamma

O O NG A WN -

—
w o

basse pointer:
devived pointt +);

depiccl berned class obget);

base: function +f 3;
plass: = to tunclat +f 5)

Virturediclall
pattion clas: ronit;
mot. +£f 2

Dynamic Method Dispatch Example

#include <iostream>
using namespace std;

class Shape {
public:
virtual void draw() {
cout << "Drawing a generic shape" << endl;
}
}s

class Circle : public Shape {
public:
void draw() {
cout << "Drawing a circle" << endl;
}
}s

class Square : public Shape {
public:
void draw() {
cout << "Drawing a square" << endl;
}
}s

int main() {
Shape* shapes[2];
shapes[@] = new Circle();

shapes[1] new Square();
for (int i = 0; i < 2; i++) {
shapes[i]->draw();

}

return 0;

https://gamma.app/?utm_source=made-with-gamma

Polymorphism: A Visual Summary

f(x)

Function Overloading

Multiple functions with same name,
different parameters, resolved at compile-

time.

Y

Abstract Classes

Uninstantiable base classes with pure
virtual functions, enforcing common

interfaces for derived classes.

Virtual Functions

Base class functions that can be
overridden by derived classes, resolved at

runtime.

(D

Dynamic Method Dispatch

Resolving the appropriate function
implementation at runtime, based on the

object's type, using vtables.

https://gamma.app/?utm_source=made-with-gamma

Week 8

Encapsulation

https://gamma.app/?utm_source=made-with-gamma

Encapsulation: Grouping Data
and Access Control

This presentation will explore encapsulation, a fundamental concept in object-
oriented programming (OOP) that enhances code organization, security, and
maintainability. It involves grouping data and the functions that operate on

that data within a single unit, a class, and controlling access to this data.

https://gamma.app/?utm_source=made-with-gamma

Introduction to Encapsulation

Data Hiding Code Organization
Encapsulation helps protect data from unauthorized access and It promotes modularity and code reusability by grouping related
modification by making it private, ensuring data integrity and data and functions together, improving code structure and

consistency. maintainability.

https://gamma.app/?utm_source=made-with-gamma

Data Encapsulation: Private, Protected, and Public

Private
1 Only accessible within the class itself.
Protected
pi
Accessible within the class and its derived classes.
Public
3

Accessible from anywhere, even outside the class.

https://gamma.app/?utm_source=made-with-gamma

Accessing Class Members: Public vs. Private

Private Members Public Members

Cannot be directly accessed from outside the class. Can be accessed directly from outside the class. These are
typically getter and setter functions to control access to private

data.

https://gamma.app/?utm_source=made-with-gamma

Demonstration: Encapsulation in C++

#include PO0O® <« = > Encaspilelation >
fames Fuit B Entzuyenion Mst
>

1 1 onclustins vttapolnen<> &
class Employee Q
pLoy { 2 Encassplestation: <1; =
private: O 2
5 Cooluester: = (10) 8
6 Cantleat(M/cerat, 1ling. 110: =

int empld;

7 Cantinesibls (Crnat Flslane = 2020)
std: :Str‘ing name; 9 Cantiess(Diapef finovy, 2009;

17 Centinatting mhatt copping is, 2265;
Centines{Dne trua: 44;

public: X private = (08)
. . . s 12 crreater ditllect: = 10,20%);
void setEmpId(int id) { empId = id; } : Meind gy e
3 . 17 vecple palo;
int getEmpId() { return empld; } 23 tanteprants:
) lidr, lat cappated 13, 2700

void setName(std::string n) { name = n; } 17
18 mallles (10;

std::string getName() { return name; } 22 Inctineratione (lode|")
47 Contterrater ductirtins
}} 27 claterstolle (lenilator, IDeflck apores #0086)
23 habouets, 41,
29 Cantesetar(iling Oelege 5il3;
Cracersalble expre plo:
int main() { 1
22 Ciless(latle dates member =3, 2007,
Employee employee; 27 fingine 630; lto.
employee . setEmpId (123) 8 24 Inntreilatio datt, geohate, 70:
18 Canterslatte.datt,=egaiter parse 'le:;
employee.setName("Alice"); 19 franc.loger 6c - lewt

21 Centrsing@i public diate_cat'))
Canterandu(tion);
*inanee is reasiBer (ood/;

<< employee.getEmpId() << std::endl; m@;muwmma

std::cout << "Employee ID:
std::cout << "Employee Name: << employee.getName() << std::endl;

return 0;

https://gamma.app/?utm_source=made-with-gamma

Devury Dite Seqity Code Maklity
Tett Tale AL Frmaatien Chnthbiaat et
(ff‘hrV.‘ rlon Ervampahiove) (rworeypal Mty
Dote S«"'W “M Rzt IV Eermasm
Lrioegasioket LOreeons ey
- e 10 Lot § arasccing
,"él'\‘t'l‘b Ity L Frzc . o et e\ \
- “"\-“f" (a3 Lo ?‘y,nl'.h‘v',‘ \ B
-

Benefits of Encapsulation

1 Data Protection 2 Modularity
Shields internal data from unauthorized access and Encapsulation promotes modularity, making code easier to
modification, ensuring data integrity. understand, maintain, and debug.

3 Code Reusability 4 Flexibility
Encapsulated classes can be reused across different projects, Encapsulation allows for changes to internal implementation

reducing code duplication. without affecting external code.

https://gamma.app/?utm_source=made-with-gamma

Encapsulation and Information Hiding

Data Hiding
1 Key concept behind encapsulation. Prevents direct access to internal data members, ensuring data integrity.
Controlled Access
2 Provides controlled access to data through publicly exposed methods (getter and
setter functions).
Maintainability
3 Simplifies code maintenance by allowing changes to internal

implementation without impacting external code.

https://gamma.app/?utm_source=made-with-gamma

BANK

Bach ACCOUNT

Surchee:

$1000,00000

Decosit:

Rooule:

Depusine

Dardrawal

Cllarn

Coluirte

Practical Example: Encapsulating a

Bank Account

Data Members

account number, balance, etc.

©}
Information Hiding

Internal data members are private,

accessed only through public methods.

fo)

Public Methods

deposit(), withdraw(), getBalance()

https://gamma.app/?utm_source=made-with-gamma

Design Encaxl silable

. ClLasses
Designing Encapsulated Classes

Intaniy bountbichculdate

* the mdsct pall data
1 Define the data members, representing the state of the
) Ary. Identifly Data
ObjECt. define public methods
p) Implement the public methods to control access to data defint il Gtel

festions to aniablal matude

members and provide functionality.

Deficy matur pestert
3 Consider access modifiers (private, protected, public) to cofAR doces

Acfent llaquit Octama: Acess Control
pefer clancs —’ * nesister of cock contal lilis, ant pur a optable

determine what parts of the class are accessible from

outside.

Helr to luxort calve dichasew prgressing
for cuisell recures

https://gamma.app/?utm_source=made-with-gamma

Conclusion and Key Takeaways

Encapsulation is a fundamental OOP concept that promotes data protection,
code organization, reusability, and maintainability. By carefully defining data
and methods, and controlling access through public interfaces, developers can
build robust and maintainable software systems. Understanding and applying
encapsulation principles is essential for building reliable and scalable

software.

. data Pm‘(‘ecﬁ O\

. code. orgav\'\zod”‘\ov\

. resisiabi lHy
: l\/\a\n+emab\\\+y

https://gamma.app/?utm_source=made-with-gamma

Week 9

Abstraction

https://gamma.app/?utm_source=made-with-gamma

Abstraction in C++

This presentation will cover the concept of abstraction in C++, exploring

abstract classes and interfaces.

https://gamma.app/?utm_source=made-with-gamma

What is Abstraction?

Hiding Complexity Focus on Behavior
Abstraction simplifies complex systems by hiding It emphasizes what an object does, rather than how it does it.
implementation details. You only interact with the essential It's like using a remote control without knowing how the TV

features. works.

https://gamma.app/?utm_source=made-with-gamma

Importance of Abstraction

Code Reusability Flexibility

Abstraction allows you to Abstraction makes code more
create reusable components, adaptable to changes. You can
reducing code duplication and easily modify implementation
improving maintainability. details without affecting the

overall behavior.

Maintainability

By separating concerns, abstraction makes it easier to understand,

debug, and modify complex systems.

https://gamma.app/?utm_source=made-with-gamma

Abstract Classes in C++

Blueprint

1 An abstract class acts as a blueprint for derived classes.

Incomplete Implementation

2 It defines the structure and behavior but doesn't provide all the details.

Cannot be Instantiated

3 You cannot create objects directly from an abstract class.

https://gamma.app/?utm_source=made-with-gamma

Defining Abstract Classes

class Shape {
public:
virtual double area() = ©; // Pure virtual

function

};

The keyword abstract indicates an abstract class. Pure virtual functions are

declared but not defined.

https://gamma.app/?utm_source=made-with-gamma

Puture Virnation

Pure Virtual Functions

virtual double area() = 0;

Pure virtual functions have no definition within the abstract class. Derived

classes must provide implementations.

https://gamma.app/?utm_source=made-with-gamma

Interfaces in C++

class Drawable {
public:

virtual void draw() = 0;

Interfaces are like abstract classes that only contain pure virtual functions.

They define a contract that derived classes must adhere to.

interface

In tte for ourees by it wethod ina the iss oud tinteasce in losts coneels what natt of foce of
contact prescivs fromly ste fowore recusduted in paseptant.

Be lise for Intertaccopretis, senteed lly tel the modur descrents naddes lactions, lyeed fas
wiht a is percoriter tike rolses terginatlor, and on tenethess ater prap box get concerance
with nct our gravied

We ides in Interfaccoprietis contact and citseal sto heat threcded ingiscessonaton, af and
diebatch Uerage in resssciers for set methool them beast, sit acopine witho legichers a rae
diffecesder due therrs, or miytiert that is bermons,

Wellee for Intertaccoprietis contacd tental sserrices the help, the is repacls protect of you
high, of cenclactand contecs gveridad (o, be wethors to al firer thes is inrocespaciotial the
methies thest and dsrrect, and renofic corracts.

Wha las Intterfaccoppat is bescu, method esuppet of fecornfrout that, youple peetair the
instrayss oller aclests resten doardes on perorrate bernoss in the saercond pecs thvie, it ar
accosse to the actionatillilation.

https://gamma.app/?utm_source=made-with-gamma

Implementing Interfaces

concrete Jasp= (CLE)-hl)> class Circle : public Drawable {
contration(CR1l1l) - .
public:

void draw() override {

lledar: inpleremenaob: (llip, hiet'. .ribl=

imost: interrese())

inedar: inprience. ', imosta, 1 (> }
ST > }

imost: /mipgfinctoedcel, ried) ?

imbst.c_1lderloot water meion,.a. (1()>

imost: / inpoinedosloclllame. 1;

) -

// Implementation for drawing a circle

Concrete classes inherit from interfaces and provide implementations for the

interface methods. The override keyword ensures proper implementation.

https://gamma.app/?utm_source=made-with-gamma

Benefits of Abstraction

Modularity Polymorphism

Abstraction promotes Abstraction enables

modularity, breaking down large polymorphism, allowing objects
programs into smaller, more of different classes to be treated
manageable components. in a uniform way.

Extensibility

Abstraction allows for easy extensibility, adding new functionalities

without modifying existing code.

Benefits Abatretion

~
Maintaling
AvpauTece

https://gamma.app/?utm_source=made-with-gamma

Designing Abstract Classes and Interfaces

Identify Common Behavior

1
Determine the shared functionalities that different classes will have.
Define Abstract Class or Interface
2 Create an abstract class or interface with pure virtual functions for the common
behavior.
Implement Concrete Classes
3 Create concrete classes that inherit from the abstract class or

interface and provide implementations for the virtual

functions.

https://gamma.app/?utm_source=made-with-gamma

Week 10

Pointers and Memory

https://gamma.app/?utm_source=made-with-gamma

Pointers and Memory: Working

.t . I ; r 7
with pointers, new/delete, a e
%“;trim:lmm&;@-mm ml{."’?ﬂenor .
uﬂdyz:ﬁ;isitel cez Qf’@ruce ¥ lw’ ———
S 9159 oyt - Linesulee o

°
A5 ‘motes lni g or Oy
€r natyr 3 A oM {ige:
SMad rt Oll |te) 3133 Mot Eaver penduaey TS Tty
5161 &m{ean’ e osuation n““r»er ! |
=5 ¢ 48 LT

; z:gg 199 ige r{ﬁmgﬁfs xaing i ’f
$208:1be sasc.rvem mwm i
S5164:loeales fne ﬁg&vau\g\‘m tion, 2ad foratier)
Slg?ooorstcy: Incleer. SelbUion
S373:10h is Qetreriser Bomale Catiriey,
[

HLS 191 Aees) Exel
$153: 1ny fce nq:nﬁm_, - eates sreitied the arperils vod Metinelll,
g{g?:;n??:agﬂly m}z' ahe carterion,
AQ
S1S3-the lleeua[_sstedsas od
- b eaiseetriinsion .
Hore: coasssctaray frower coliesy Iettia, |
! zasifcurf fur lleses iie forvied '
o o o o o o . ¢ird polle extertiie 1o .
This presentation delves into the fascinating world of pointers and their role D iR cotostiive o eston tesiets)
§191: 1nsstal #2107 by
s$119: lﬂf;:‘;cgam:aﬂ toler acfﬂmfél

in managing memory in C++. We'll explore fundamental concepts, dynamic S1 onscasentiation fast
10lectius £irs pate: cnquet for 3perci)SY
Seheneles 1Wg:Sectier the irg®

memory allocation techniques, and the power of smart pointers for enhanced S hictoalors

er, catsr, B

memory management.

https://gamma.app/?utm_source=made-with-gamma

Understanding Pointers: Fundamentals and Declarations

Pointer Definition Declaration Syntax

A pointer is a variable that stores a memory address, essentially

o , data_type *pointer name; // Declaring a
a location in memory where data is stored.

pointer to a data type

int *ptr; // Pointer to an

integer

https://gamma.app/?utm_source=made-with-gamma

Pointer Arithmetic and Memory Addresses

Basic Operations Example

Pointers support arithmetic operations like addition and
int arr[5] = {1, 2, 3, 4, 5};

subtraction, allowing you to traverse memory locations.
int *ptr = arr;

ptr += 2; // Pointer now points to arr[2]

https://gamma.app/?utm_source=made-with-gamma

Dynamic Memory Allocation with new and delete

Dynamic Allocation Deallocating Memory

The ‘'new operator allocates memory dynamically on the heap . .
int *ptr = new int;

at runtime, allowing for flexible memory management.
*ptr = 10; // Assign a value to the

allocated memory
delete ptr; // Deallocate the memory

https://gamma.app/?utm_source=made-with-gamma

Dangling Pointers and Memory

Leaks

1 Dangling Pointers

A pointer that points to
memory that has been
deallocated is a dangling
pointer, leading to
unpredictable program

behavior.

Memory Leaks

Failure to deallocate
dynamically allocated
memory results in memory
leaks, gradually consuming

available memory and

potentially causing crashes.

1. For pointdls tife belect;
2. Tecrecting,

3. Memorky lonks bate to tocleen’s
postcy; ,
4. Uetar bile.s a botiase anrass:

4. no lecased tanking $ur a
freed()
vatlelente be usets,

Mdt it cktder,

2.

9.

6. por i invard;
7. reclecters;

https://gamma.app/?utm_source=made-with-gamma

Smart Pointers: unique_ptr and shared ptr

unique_ptr shared_ptr
Provides exclusive ownership of a resource, ensuring that only Allows multiple pointers to share ownership of a resource using
one pointer can access it, preventing memory leaks and dangling reference counting, enabling safe sharing of dynamically

pointers. allocated memory.

https://gamma.app/?utm_source=made-with-gamma

Comparison of Smart Pointers:
Advantages and Use Cases

Feature

Ownership

Use Case

unique_ptr

Exclusive

Single ownership,
resource

management

shared_ptr

Shared

Shared resources,
complex data

structures

Lonaue_ptr

The lader ssape suchers wad
enclsips

vantages

bned leaens

Lipuresctir
Adture _ptr

Inimaical asepep ol dayage
for thatt oitx

Coll US Scrieation®
culerins, TO'S Grejsnay
entiation:

Tinpatdal ede apcchermed
ser fatiger

Tarnle you ravelfty lilling
cardurog UTS craigs and
deeynent

Temagre pances ddermant

air fast gies

Share ptr

Ininalorr asspepef feygu
far chalc uits

Cotl UD Godil frerrely
coleyite, TOS Siciwnay
enthaloo:

Timlalder cace apcinesrrat
aw thetecns

Torniayor rate fy [nlloy
carluirog U™S cresse and

Enruagye aawabadrieerrel

air fast gies

https://gamma.app/?utm_source=made-with-gamma

e
Best Practices

Memory Management

Pointer Safety and Best Practices

4: The menabesnmory manageternrprist and ellscit and onsect this hst ds
elecomsl of pount casl manectics or practies, supper, and od loced pointer.

Safe memory lication

SafewoverSafe; |nltla|lzatIOn OwnerShlp
ctadectior (1,90f) saft, —p
puse? (
Always initialize pointers before Clearly define pointer ownership
using them to avoid unexpected to prevent unintended access
Prepemolnter flemor behavior. and avoid memory leaks.
Proppe memory seation e
St atesh vee-assel and
thorgent an motogelssy
exjoy motedle. pottors °
o Deallocate
@ Popert Dedlattion .

Theere Inter prigition ponit Explicitly deallocate dynamically allocated memory using ‘delete” or

propey ead. <
Beallocation .
smart pointers to prevent memory leaks.

© Expecitealocations @ Forestalul placted dealction.

Incerenc ader naly prention @ Facalsty poreict echcricunt
arcallocations. cent.

https://gamma.app/?utm_source=made-with-gamma

Pointer Visualization: Diagrams
and lllustrations

= s

Pointer Direction Memory Space

Arrows visually represent the Diagrams of memory blocks
direction a pointer points, indicating demonstrate how pointers interact
the memory location being with memory addresses and

referenced. allocated data.

https://gamma.app/?utm_source=made-with-gamma

e -

MEMORY 12:25

f/

OFERSOT

7)

Conclusion and Q&A

Pointers are fundamental to C++ programming, providing powerful memory management capabilities. By understanding pointers,

dynamic memory allocation, and the advantages of smart pointers, you can write robust and efficient code. Any questions?

https://gamma.app/?utm_source=made-with-gamma

Week 11

File Handling

https://gamma.app/?utm_source=made-with-gamma

File Handling in C++: Reading,
Writing, and Beyond

This presentation explores the fundamentals of file handling in C++, covering
essential techniques for reading, writing, and manipulating files, including

somEoesommmN binary files and random access.

https://gamma.app/?utm_source=made-with-gamma

Understanding File Streams: ‘ifstream’, ofstream’, and
fstream’

Input File Streams (‘ifstream’) Output File Streams (‘ofstream’) File Streams (‘fstream’)

Used for reading data from a file. Used for both reading and writing to a

Used for writing data to a file. file.

https://gamma.app/?utm_source=made-with-gamma

: six lestiodk |

dershalt: ial 1/ [—
s regrice: data -

deterrilet, ‘ex nativey lait)
chamesfaclies ass, "tate- detroults desiget Commm

Reading Files: getline()
‘read() , and Handling File Errors

1 1. getline() 2 2. read()

Reads an entire line from the Reads a specified number of

file, including whitespace. bytes from the file.

3 3. Error Handling

Use “fail() or "bad()" to check for errors while reading.

https://gamma.app/?utm_source=made-with-gamma

Writing Files: << operator, write() , and Controlling File
Output

<< operator ‘write() Controlling Output

Writes formatted data to the file (similar Writes a specified number of bytes of Use manipulators like "endl|” to control

to outputting to the console). data to the file. line breaks and formatting.

https://gamma.app/?utm_source=made-with-gamma

Working with Binary Files:
‘open() with ‘ios::binary

Text 111

11101100
11131111

1111116 To work with binary files, use the “ios::binary™ flag when opening the file with
0 e g s 1 s s

mate ttrat hame a an ‘open() .

31171149
1018011)

toble abw tre, text 11111118 ofstream outfile("binary_data.bin", ios::binary);
ticngy, be toel batt T1TEELLS
kapp. thamiable lor's 11111110

foce fot a ragrtates. d 15 b 1 s S

Mere whilt, thome to

laegentle crochy, one

bafttfie bebnitg

https://gamma.app/?utm_source=made-with-gamma

Reading and Writing Binary Data

Reading Binary Data Writing Binary Data

Use ‘read() to read binary data directly from the file. Use "write()" to write binary data directly to the file.

https://gamma.app/?utm_source=made-with-gamma

Random File Access: ‘seekg()’,
'seekp()’, and ‘tellg()/ tellp()

1 1. seekg() 2 2. seekp()
Sets the file pointer for Sets the file pointer for
reading to a specific position. writing to a specific position.

3 3. tellg()/tellp()

Returns the current position of the file pointer for reading/writing.

https://gamma.app/?utm_source=made-with-gamma

A <7 : \
st woact b ek 0 patiiometF
,_,...,nv'w‘:ﬂl.mw " "
wonee ot man a0l (Abeie st ﬂﬁﬂwm‘ s
1 & pom ams J

ot en A flas Sebutilaststed gnetl;

= ol wlen etlaeel])

Vit e e VRO el g o i e Beon ‘MN’:mulm|0
[remmteryrr e st f“c&::;vm [ekl
e Wamthee Gsibcie i -
 sesir eveertin: mmllewnte T et Begt Bxvteds (b Dalest erial)

vy 5

L ome S sovodel slalivells atita woegetcesnilel]

" eserionnis possetoe rireoe o ceneilis puest)
Vsl G b terwied (s bl gy w0 “Thoae Ost) Gt (nred);
Y i rman Ty

#onss ¢ g due Gk Soezees Bery ittt »
— - 0) fowr (pilotmt mild tat L gf elor 1)

e w oy it

o —
—~ -.--:‘m-u-uumhmmm;

“}‘-:-w.
st) B ot
M-;ﬂ e leteidn ot Dy laricy FRMTICN
n -q'n-uyum .
R ““‘”"W
U toplaeg [

Practical Examples: File 1/O for
Text and Binary Data

Let's explore real-world scenarios where file handling is essential,

demonstrating code examples for working with text files and binary files.

https://gamma.app/?utm_source=made-with-gamma

Diagram: C++ File Handling Process Flow

This diagram illustrates the typical process of file handling in C++, from opening and accessing files to reading, writing, and closing

them.

https://gamma.app/?utm_source=made-with-gamma

Conclusion: Best Practices and Takeaways

1 1. File Error Handling 2 2. File Closing 3
Always check for errors after file Make sure to close files using
operations and handle them ‘close()" after you've finished using

appropriately. them.

3. File Permissions

Understand and manage file
permissions to ensure proper

access and security.

https://gamma.app/?utm_source=made-with-gamma

Week 12

Templates

https://gamma.app/?utm_source=made-with-gamma

«Zll '\-‘F““‘,)\a\e.s

—

Templates: Creating Generic
Functions and Classes

Templates are powerful tools in C++ that enable the creation of generic
functions and classes, allowing code to work with multiple data types without
requiring explicit specialization. This presentation will explore the
fundamentals of templates, their syntax, use cases, and the advantages they

offer.

https://gamma.app/?utm_source=made-with-gamma

Introduction to Templates

Templates provide a mechanism for writing code that can operate on different data types without the need to write separate code for
each type. This makes code reusable and adaptable to different situations.

Function Templates Class Templates

Generic functions that can work with various data types. Generic classes that can hold different data types.

https://gamma.app/?utm_source=made-with-gamma

Need for Templates

Before templates, developers had to write separate functions or classes for
each data type, leading to code duplication and maintenance difficulties.

Templates solve this by providing a single, generic definition.

1 Code Reusability 2 Flexibility and
Adaptability

Eliminates redundant code
for different data types. Allows code to work with
various data types without

modification.

3 Improved Maintainability

Simplifies updates and bug fixes across different data types.

<Funciiom r i

2 om repecting inatatle saselg, ttpe f.

Ty~ saselsg, rr for :
2 anple wiilgnt. colar= comsiloress) A

< (hepll serencttions to-

thner . .
< lapre Lriigeats : doggee) ;

ther cutew =
g J = ast Falel y
tayling crocn Lamen); Paleicet, 0)}

3 saple viilctolotedg (haller)
{ wepplcollioingr veder fu
¥ b ntastale (implontic comp
Wappl lasiuc, cotiee (laver dozgee), S L o
tagie o). i

Perentiom Vliing vaer (natelosmed)

(anper cnsericallloning wadler, meterofll);

¢ taperl wiipee thetoliogs apporl)

¢ tapr-iratelictees, naspiocis repocatiey (om tnficteorl))
wapy eyertytholonting (hateer);

¢ taper laphilotey, ressalatteds
tacyerl):

¢ repeiionallings— fonction seti(chpratim salle (taling
jaxptinatallictter ic thas pressiclel)

< nepel consstytter weer duccterl);

< ap'pre coneiictiage, ao tane wetlertines
apgretionteorl):

tiopelales datter f3l,

- < hapclliunteltting (BTP) ‘F“Y?Hing apacelifalictes,

< aapplinatillone =coresxslfettial

2 tapre catreltg your
appel gepsitiating to

< arpri caselftateing the vate

i layell)

¢ {appel cooccience p ‘ : :

2 ra?s,a‘u‘ be coroeiccthe trafererion the taltiles

< lappil weer ratititalle puncless.

1 mpre pettcerialts;

3 apet vacteol)

3 meps teell,

2 msia.lee)

2 het;

{apher csiell)
the vertiot vacrelettated)

priotions.

https://gamma.app/?utm_source=made-with-gamma

= Syntax and Declaration of
pu—__ Function Templates

L rage wererarvel) Function templates use the 'template' keyword followed by angle brackets (<

wally Sor (pde: I
r:.;;f crpr fartepile betd oy
VS Jd)

ceag awnler Sutrests "N) >) enclosing type parameters, which represent the data types that the
léfwte- bprt-aliiecd <wdes! the set In acing tw
templstee <[) g

function can handle.

oy L
oenitr [exter iod gelerlier ths

i Rty oo coce template
T add(T a, T b) {

return a + b;

https://gamma.app/?utm_source=made-with-gamma

Syntax and Declaration of Class
Templates

wil compllation obico!/ceclacts fo:
*laspllates for terstablsty;
‘template:
‘hntengolate laass daltt:
WHEEt @ DAckace: Class templates follow a similar syntax to function templates, using the
“tereater wilt for cond temmlet;
sanecherlatts lassst:

andt decciams class templat: '‘template' keyword and angle brackets to define type parameters that

cart emplates tempales rerviten oup olicbless:;

trenpllaes; represent the data types the class can hold.

cater cocacl-temple temple:
cart fare tenpless/Tere/cokt fext template:

‘tabes:
cclerCactlarterencis for thr templates;

vortetace angilemplated : template

“vimal ios
cohe Gokaoler

"tate tar "tar tempplet” ClaSS StaCk {
yes: .

"learly lextr terrange ofice clplwate:

text: — yooklceiate: pr\ivate .

templatace leays;
cart: lovtsele cost templatt; T *data .
clats bistental legac: J
reallow "template:

int top;
public:

// Methods for stack operations

https://gamma.app/?utm_source=made-with-gamma

Template Type Parameters

Template Type the parparameters: s
e Type parameters are placeholders for specific data types. They can be any

= Peoplltinor i | LR valid C++ data type, such as int, double, char, or custom user-defined types.
5 R Tocllpate - L; Ank == U

T- Camie Lypest 5|1 ; Date = Syles 1 They are used to represent different data types in the template's definition.

T. % Foyres P\ong =)

template
T add(T a, U b) {

return a + b;

https://gamma.app/?utm_source=made-with-gamma

Template Function Arguments

When calling a template function, the compiler automatically deduces the
data type of the arguments passed to the function. This allows for flexibility in

using the same template function with different data types.

int x = 5;
double y = 2.5;
int suml = add(x, y); // Compiles and works correctly

https://gamma.app/?utm_source=made-with-gamma

lt'ulr.qv-,'- 2’
o Tans 1im Tavprewt)
bOIH. PR B | 0 e {40 et))

R
ity ey 0

ety Weeodew Lise ot v

Lt st Setuasae

we

)

§oe . Supt el Pl | oengr (4 fww Dwaad |
1)

tohile tatalonon Matbw!)
by !
¢

RS
toroaet |

DA, Lt Yo Domen Peem Lg bt e Sl |
vun e B (meso) LA T v et Ve 1)

o %\\.,.__Q’

By TN (| WEASE v e s v

[Eave et S8 O e 7) Cenae P O el
v 0w Y

o bemand)
H 4 ey
) —|
pt Vi Talmmn-\-v‘-‘—p-l.
(sa cficms | DA W el
oo Bave Lty Lee T)

W reapment BV

:

Template Specialization

Template specialization allows you to provide custom implementations for specific data types. This is useful when the generic implementation
does not meet the requirements for a particular data type.

template<>

int add(int a, int b) {

return a * b; // Specialized implementation for int
}

https://gamma.app/?utm_source=made-with-gamma

Advantages and Use Cases of
Templates

Templates provide significant advantages for C++ development, promoting code /—\dvanta es and templases

reusability, efficiency, and flexibility. ¥ Reoscate is lige locte,

¥ (Casseit Corfomere H\/l’res

¥ Cassalle lccleim late perscration Anvariaﬁns

Code Reusability

Reduces code duplication and

maintenance effort.

Efficiency

Eliminates the need for multiple
function or class definitions for

different data types.

Type Safety

Ensures type consistency and

prevents potential errors.

Genericity

Allows code to work with various

data types without modification.

Cosseit Cote wort ssades

Template with bebock bank

Cassell code fechniotes

Fexpa\i’r\/ is blenk cacker

Templaﬂ: for, socking

S Tale
Te_rrsitahmg 5

- Corle cordnafing
- wsid ruﬁcc\y

- femplate,
?o\ures

C

https://gamma.app/?utm_source=made-with-gamma

Diagram: Visual Representation of Templates

Templates can be visualized as a generic blueprint that can be instantiated with different data types, creating specialized versions of the function or class

for each specific type.

Template
1
int
pi
int version
double
3
double version
char
4

char version

https://gamma.app/?utm_source=made-with-gamma

Week 13

Standard Template Library (STL)

https://gamma.app/?utm_source=made-with-gamma

Standard Template Library (STL):
A Powerful C++ Tool

Dive into the powerful capabilities of the Standard Template Library (STL) in

C++ programming.

https://gamma.app/?utm_source=made-with-gamma

Why STL Matters: A Powerful C++ Toolkit

Pre-built Data Structures

STL provides a collection of pre-built and
highly optimized data structures, like

vectors, lists, and maps.

Generic Programming

STL allows you to write code that works
with any data type, promoting code
reusability and reducing development

time.

Efficient Algorithms

STL offers a wide range of algorithms for
sorting, searching, transforming, and
manipulating data, simplifying complex

operations.

https://gamma.app/?utm_source=made-with-gamma

Isyistention

Sarullos

Exploring STL Containers: i

Aust. Tes 58

Vectors, Lists, Maps

Asg: Crat 16lig Azst Perness Plag Asst Crals Cilty
Ass: Veica! Fat Assa Valivate! Tent Aste Veteal Fat

Asd. Tat Asst. The S8 Data. The K6

1 Vector p) List

Caraer
Dynamically resizable arrays Doubly-linked lists where] Ass: Larmpanst Map
Acsc, Porwerstd Mo
that store elements in elements are linked to their e g::::;r::p
contiguous memory neighbors, allowing efficient :t i::“:o
locations. insertion and deletion at any
position.

|V| Ferciver
3 Max: Conmest Filllay
Ass: Congrelisp

Associative containers that store key-value pairs, allowing efficient List. Calon Uss Pirap
lookups based on unique keys. o i b

List: Coff Last Pililg

https://gamma.app/?utm_source=made-with-gamma

Vector: A Dynamically Resizable Array

Definition Initialization Common Operations

std: :vector<data_type> std: :vector<int> numbers = {1, push_back(), pop_back(), insert(), erase()
vector_name; 2, 3};

https://gamma.app/?utm_source=made-with-gamma

pUPIIK//LL.M>

Visualizing Vector Operations
© O

poP_back/LLI.m> ° prase (push imection((Z50)H // Example code:

sreetile aphlion(f.Cr3t= 0404
poP_back/ILt.m> porraton ()))> std: :vector<int> numbers = {1, 2, 3};

3
numbers.push back(4); // Adds 4 to the end

Erase:
‘ numbers.insert(numbers.begin() + 1, 5); // Inserts 5
style (; at index 1
Tyterriandetire pnaght: foretive weep, rech,retection,
, doneyprasion.elsdgleat. numbers.erase(numbers.begin() + 2); // Removes element
Cutpuris arpersiet. for
?urcgrtuble laretion lo.rection at 1 n d ex 2
uncction, lasech prasist.on
Gont fat.fnection numbers.pop_back(); // Removes the last element
forcectidre fasction (11 scile> —

forcertyille laretion (Slpnetiabla
forcectidre fasction (11 sclle»
forcertyllie Iprciifls.iabl>

https://gamma.app/?utm_source=made-with-gamma

List: A Flexible Doubly-Linked List

Definition Initialization Common Operations

std::list<data type> list name; std::list<int> numbers = {1, 2, 3};push_front(), push_back(), insert(),

remove()

https://gamma.app/?utm_source=made-with-gamma

Understanding List Operations

// Example code:

std::list<int> numbers = {1, 2, 3};
numbers.push_front(@); // Adds @ to the beginning
numbers.push _back(4); // Adds 4 to the end

numbers.insert(numbers.begin(), 5); // Inserts 5 at

> Alst a push jontent

the beginning

numbers.remove(2); // Removes all instances of 2

> List: jpush pointent

https://gamma.app/?utm_source=made-with-gamma

Map: Key-Value Pair Storage

Definition Initialization Common Operations
std: :map<key type, value type> std: :map<std::string, int> insert(), find(), erase()
UETJIETER ages = {{"John", 30}, {"Jane",

25}};

https://gamma.app/?utm_source=made-with-gamma

Map Operaatio

Maptnap

b e
o=

Trestragh dracter:
criles fferessepol

Pake

Engate tales:

\ Taush for (ompiected

Pengratted jenniine alustncstape)
comprennen to comporatiod.

Lengileter:
Jrinller forrestapol

/ Tract:
Covalesrsets, cnoch Srase Tengoldes:
upoyller /ccralpook. Jriniler fferegpook.
Teisple chtracts:
Trpert terse disagries /cinzate-fferessapol

that copato tee and

conscrizans.

Srase leases:
Crloicsirang fradpo!
pragites ffereaspool

Navigating Map Operations

// Example code:
std: :map<std::string, int> ages = {{"John", 30},
{"Jane", 25}};
ages.insert({"Peter", 28}); // Adds a new key-value
pair
auto it = ages.find("John"); // Finds the key "John"
if (it != ages.end()) {

ages.erase(it); // Removes the entry with the key

"John"

}

https://gamma.app/?utm_source=made-with-gamma

Qe R n SR

| tramg ~lemey T oAl

: . ey ta

: W-q:u«:" 3hie woeteg ‘wnm-gl::

) '“Pl‘ene,% @

Moy (rast ~[.°*&lm‘\°ta)
Wriare

| @
i
| it 3
| 30y ,::m"::'ger roteg ter ﬂhﬁel
1" Setami(‘““ﬂegcﬁf‘"“ tengle,
11 T ot tuscirs g,
& ¢ Tartseetarsy. ,;“m""guu. conttes)
feale Gntter (Roncitar
m':":: o ”m)ﬂl.::ﬂﬂ)
wa >
, Wtlees sorele(ctarue- qryy; T

Essential STL Algorithms: sort,
find, accumulate

) ot oates.toe (pea-

A1 2 gotercgf ¢ darl for
s | &ene or mm',’,{:'“lm
» s[!mam,)

175 | fstert \ar tentourder

| 18 Coict, trom (stenctarsatesy)
) et coleggr §)

STU containters
r ertatticet(on galactiorl cartes which orr & O

Contanes

feraslacteforfoars v L \

Sord

e sort() find()

Coratina(15)
searctec(15)

Mapt ver sums

Sorts the elements of a range in Searches for a specific value in a
ascending order. range.
accumulate()

Calculates the sum of the elements

in a range.

https://gamma.app/?utm_source=made-with-gamma

Week 14

Exception Handling

https://gamma.app/?utm_source=made-with-gamma

Exception Handling in C++

Exception handling is a crucial part of C++ programming, allowing for graceful
error management and robust application development. This presentation
dives into the fundamentals of exception handling in C++, exploring the 'try,’

‘catch,' and 'throw' keywords, as well as the creation of custom exceptions.

R O
S2S5550
25565508
S2S7657707%
S253266700

52c5557r;84§2.v
S2S5688007) 11T

S2S50771117;

107), 1871%
S2S70560, Nec=7206
S2S55727007 106113~
: : ’J. 1UD 7
S2S55564187.1207 W
S2S5655007
S255655407
S2S56711017

A
S2S755(

https://gamma.app/?utm_source=made-with-gamma

Why Exception Handling?

Preventing Program Crashes Enhanced User Experience
Unhandled exceptions can lead to abrupt program termination, Exception handling allows for controlled error handling,
interrupting the flow of execution and potentially causing data providing informative messages and enabling programs to

loss. continue operation even in the face of errors.

https://gamma.app/?utm_source=made-with-gamma

try-catch

The try-catch Block

Exception(;
f(
/ Exctch,Usl_);

(acmet: ()

f; moltoms;
Trye (try; tr\y {

Pacmall it ; , // Code that might throw an exception
Exctell fit; o v

} catch (const std::exception& e) {

Proeal6y; // Handle the exception

1 contrel();

2 headly; std::cerr << "Error: " << e.what() << std::endl;
3 cystch upcry;

https://gamma.app/?utm_source=made-with-gamma

The throw Keyword

if (x == 0) {
throw std::runtime_error("Division by zero error!");

}

https://gamma.app/?utm_source=made-with-gamma

sLUEPRINT | (.

Custom exeeptioms.

Name: 4.12/30 Exspertias:

Exceptinatlesses:

Properties 1.33

Forestl exceptiture
BaxcEnceptons.

Dubletten: 1.20

Excertine=: 119017
{ delicionaforcetioresses:

Pisies exctiationged preptessint;
Fastes excrementillaclaiend;
Plence propertionged preecases:;

toale exrzceeptioncentlye {

abalc apprectcantiantleatasl) ¢
presaler fer C01:32,
exeerntor fordlocoraption sctecs:

»

crubal Exeepttion freser unsptibable pretentty, to comer {
calde greer ¢
feel erpeoBcforeattig: is
cressibltli/fquobarpsticher.aucialllettl);
cpleachlly fackay secactssatel,

class; wircify messery,
presstior1930/302 complle fafe/22, 300,92023-0475684/169)

Creating Custom Exception
Classes

class MyCustomException : public std::exception {
public:
const char* what() const noexcept override {

return "My custom exception occurred."”;

https://gamma.app/?utm_source=made-with-gamma

}

rayitith:

Handling Multiple Exceptions

try {
// Code that might throw different exceptions

} catch (const std::runtime_error& e) {
// Handle runtime errors
} catch (const std::invalid argument& e) {

// Handle invalid arguments

https://gamma.app/?utm_source=made-with-gamma

try try tach block

try ; arell, tisl ;

Nested try-catch Blocks

Y try {
try {
firi p; n2 // Inner code that might throw an exception
} catch (const std::exception& e) {

// Handle the exception at the inner level

}
} catch (const std::exception& e) {

*

// Handle the exception at the outer level

try tEx,;1,stell;sol.D;

https://gamma.app/?utm_source=made-with-gamma

'tornal fil bllly

S
trrily The finally Block

try {
// Code that might throw an exception

} catch (const std::exception& e) {
// Handle the exception

catch:
fxiiting: f(tal..y() } finally {
)

// Cleanup code that will always execute

https://gamma.app/?utm_source=made-with-gamma

Bubble sort; {
prrient.son(calyl);

fo.Cre =+ + oul
10 aceplecwintyl: lintomatat fineerptars, st, mey-gosts

12. feecuries, 1 sepale) {
12. acccepttan(t; foyclet,)rt.00 + Ooat (scah; 1010519%); B t P t "
W es ractices

butableesent; ineleptiide: ft4, intriltie: Sor*"t, = ("13. 2)

excepting ;lle:
incceptire: ineclive; pustalssurs, (iet 1005).52%s, *lor?);

10. tycculiel, fastanc6, pertente, reall, firat Sarite“(= 13:)) 1 1 Keep It SpECifiC 2 2 Log and Document
ta.it ’ ’
dntcu(tfant: anghllsotrt.f156t: Al161.151d; (nlel094);
exceplternis: 1.0pne__setl1000: fioplle, (iteb(ist, (for*€); Catch Only the eXCEptionS Log exceptions for debugging
interitalsirn cord antiate Sort: (ntrmlesipe); you expect and handle them and document the exception
12, excelbtactiant 10ra__eddt.90: fioblle, (alc(sds™; a3 ropriatel handling strate in vour
ER pprop Y- g gy Yy
rnactie-inineyrs purcbptent: ftoplle, (0tel(arit_Sor=*); FeilE
13. rnetblet fimever moulle_ eOt, 1de. detanle: lyval atti); '

3 3. Avoid Empty Catch Blocks

: sebplessccing, thes inght, an chiserengton thanetholo:
: copderspratconn woll, exepttor hactethtnt Lesten the le get.

: acodaclectionsutnews, proable for nareppert fortherovives. Always handle exceptions explicitly, even if it's to re-throw them for

: incpuctsootrescentor reppctiton save the prefely contios . .
: reppurtalonds, cohe, sepft asognlant. hlgher—level handllng-
amopursectical forse: proce tergant for ragl, escertallage

recuurcecodes. for each chter ges finadent, copples, saring

inpplt foccangetor Leanr perencententing expply.

secplepreacause fromthi undbestce thecenal propcts.

-
2
3
4
4
S:
4:
4:
4:
5

: foceive hackesst for sores forer bobblehecwittr the base.

https://gamma.app/?utm_source=made-with-gamma

Exception Handling Workflow

Try Block

1 Code that may throw exceptions

Throw Exception

2
If an error occurs
Catch Block
3
Handles the exception
Finally Block
4

Code that always executes

https://gamma.app/?utm_source=made-with-gamma

Week 15

Advanced Concepts

https://gamma.app/?utm_source=made-with-gamma

W O ® O N =

ss
e Rergenzer
Ss G N

Cadeits rotacuam:
lnersal.cevallc

taltiin.
Intreehmendﬂ; ’

fornate Captfond, retsun
catcal conel, word)
Caynalqrbproal(

Tespalseﬂluptcomel»-Uated){

Advanced Concepts in C++

)

talcs Lsst,)77;

selividater = ==T7y:
{ This presentation will delve into advanced C++ concepts, including multiple
>fsel wid, inheritance, namespaces, and typecasting. These concepts empower
HellO~ +pe

)

tilse.gater Wartrles an salte elyste come solection piag

developers to build robust and maintainable software.

page.lDesptite

Iﬂasrlettjvenislsestilea;

Mas lacktert;

cFile>

2 1)
: teifiant: qantuiil
Rerivare detsifia raa

e.Colsics, elag
etatoply,Werflcoge. 1

tife(0sys
appilare @

;n/VMagnnentlghtng)
atter

’,,‘”‘z
serficLoUDesya;t b
dpplicﬁePntunlc stc

fcere 15

| amnlates
11=tamt celeriie
aL1S

Rerigs
Parjltydd)

https://gamma.app/?utm_source=made-with-gamma

Introduction to Multiple Inheritance

Concept Example

Multiple inheritance allows a derived class to inherit properties Imagine a class "Car" that inherits from "Vehicle" and "Engine"

and methods from multiple base classes. classes. It combines features from both base classes.

https://gamma.app/?utm_source=made-with-gamma

Diagram: Syntax for Multiple

Inheritance

class Car :

74 coc

Iy

public Vehicle, public Engine {

class members

-— ~—— ——

rabloe is..l> {
tamlimels
cubllc r=:a. {
routent(thels
precatl (fit,vit), r=s>
pplic lestftifiil, ctabit. le. 1>,
melscatt,isestisll, challaclil, tost.
pareent(classes
ppic is.sasfil;

paic lestisefill, cesplets);
pore isstibilll;
pec lestffrefill, irsation.);
parent=atriefliaclit,);
publit((iftitfil;,
rew ls=tisefill;
pec lests(tyftill, Ekrmse,);
instelhet();

) ;

https://gamma.app/?utm_source=made-with-gamma

Benefits and Challenges of

Multiple Inheritance

1 Reusability

Avoids code duplication by
inheriting functionality from

multiple sources.

3 Diamond Problem

Can lead to ambiguity when
multiple base classes have

the same member name.

Flexibility

Allows for complex
relationships between
classes, providing more

options for code design.

Complexity

Can introduce challenges in
understanding and debugging
code due to intricate

inheritance structures.

¥ VAANTEZMICE (2 oerlergg)
§ frediom rentee))
[CLABYE ngron

fure ¢3 caetetyl))
/ Lot Celtmeerisotend)

te 4arcadl)
Tir e Comstieae? cod relutileor,
Len¢ Cageliote ¢etsa))

TrecodaTTE covoee ((cratertiies)
i Caril oy

https://gamma.app/?utm_source=made-with-gamma

(2] Nanrfiespace

Namespaces: Organizing Code and ;-
Avoiding Name Conflicts :

Purpose Example
o
L

Namespaces group related classes, Using the "std" namespace for
functions, and variables, providing standard library components helps
a logical structure for code and avoid conflicts with user-defined
preventing name collisions. names.

Benefit

Namespaces make code more readable, maintainable, and easier to

collaborate on.

https://gamma.app/?utm_source=made-with-gamma

Diagram: Namespace
Declarations and Usage

namespace MyNamespace {

class MyClass {
// ... class members
}s
}

https://gamma.app/?utm_source=made-with-gamma

Static Casting: Explicit Type
Conversion

—>)

Syntax Caution
static_cast<target_type>(source_val Static casts are not type-safe and can
ue) lead to runtime errors if the

conversion is invalid.

<[>

Example

Converting an integer to a floating-

point number.

https://gamma.app/?utm_source=made-with-gamma

bast to = :). Diagram: Static Cast Example

tirst sabts , 'tpri 0d Casics" {

wallrbe, art loctes i-1}

isteth sible cablr rutting >inel =

ly = {}

ty @ 'z int x = 10;

}

cotiatiie = double y = static cast(x);

Cootlores fotest on of contbodons eroros codes cosmpe that a static
errors.

}

https://gamma.app/?utm_source=made-with-gamma

Dynamic Casting: Run-time Type Identification

Purpose Result
Dynamic casts are used to perform type conversions based on runtime Returns a pointer to the target type if successful, otherwise returns
type information, preventing errors. nullptr.
1 2 3
Syntax

dynamic_cast<target_type>(source_object)

https://gamma.app/?utm_source=made-with-gamma

Diagram: Dynamic Cast Example

Base* basePtr = new Derived();

Derived* derivedPtr = dynamic_cast(basePtr);

https://gamma.app/?utm_source=made-with-gamma

Week 16

Project Work

https://gamma.app/?utm_source=made-with-gamma

Project Work: Planning, Building,
Testing, and Reviewing a Project

Welcome to this comprehensive guide on project work, covering essential
stages from planning to deployment and review. We'll explore best practices
for creating successful software projects using a library management system
as an example. Prepare to gain insights into the lifecycle of software

development.

https://gamma.app/?utm_source=made-with-gamma

Introduction to Project Management

What is Project Management? Key Concepts

Project management is the process of planning, organizing, and Scope, schedule, budget, resources, risk, communication,

managing resources to achieve a specific goal. quality, and stakeholders are key concepts to consider.

https://gamma.app/?utm_source=made-with-gamma

Planning Phase: Requirements
Gathering and Scope Definition

Understanding User Needs Defining Project Scope
Outlining the project's

Gathering detailed requirements boundaries, deliverables, and

through interviews, surveys, and milestones.

workshops.

Creating a Project Plan

Developing a timeline, budget, and resource allocation plan.

https://gamma.app/?utm_source=made-with-gamma

i My

Tl\\\‘Pét\
TrderS

—

d—»——v-
La‘.-h-’

alegies -Lf«w ?zsssi«

;. O%VB‘ ac

: D\ng{g\{ Su\u:l ot

« ConAdshicest (A cm ¥

ONWMES /

Design Phase: Architectural Diagrams and UML Modeling

68 S O

System Architecture Database Design User Interface Design

Defining high-level components and their Modeling data structures and relationships Creating wireframes and prototypes for

interactions. for efficient storage and retrieval. user interaction.

https://gamma.app/?utm_source=made-with-gamma

Development Phase: Coding and
Implementation in C++

1 Coding in C++: Choosing appropriate data structures,

algorithms, and libraries.

p) Unit Testing: Writing tests for individual functions and
modules.
3 Integration Testing: Testing the interaction between

different components.

Wy

/

y

4

)

Jir

/

/]

\v\' ‘;“ur Ill’ll I

o

1\

Il

L

/

. »
l‘ ",
" LT
LT (1]} llllllllll l)lllllllllllllllll!
' ,
5

/

https://gamma.app/?utm_source=made-with-gamma

Testing Phase: Unit Testing, Integration
Testing, and End-to-End Testing

Unit Testing

1 Testing individual units of code in isolation.

Integration Testing

? Testing the interaction between different components.

End-to-End Testing

3 Testing the entire system from start to finish, simulating real-world scenarios.

https://gamma.app/?utm_source=made-with-gamma

Deployment Phase: Releasing the Application

Build

1 Compiling and packaging the application.

Deploy

Installing the application on the server.

Test

Running tests in the production environment.

https://gamma.app/?utm_source=made-with-gamma

Maintenance Phase: Bug Fixes and Feature Updates

Bug Fixes
1
Addressing reported bugs and defects.
Feature Updates
2
Adding new features and functionality based on user needs.
Security Patches
3

Implementing security updates and fixes.

https://gamma.app/?utm_source=made-with-gamma

Project Review: Lessons Learned
and Continuous Improvement

1 2

Review Project Metrics Identify Lessons Learned
Analyze project performance, budget, Document best practices and areas for
and schedule. improvement.

3

Continuously Improve

Apply lessons learned to future projects.

https://gamma.app/?utm_source=made-with-gamma

Diagram: Class Diagram for a Library Management System

)
7

Il
u

+isbn: string |

+title: string |

.... \

+author: string |

+availability: boolean |
e &
S -
| Member |
Hmmmmm e +
| +memberId: int

|
| +name: string |
|

| +address: string

ik

. 4“
z 5
|
5
v 4

mmmm e e eeooo +
fmmmmmm e mmeeooo +
| Loan |
T TP +
+loanId: int

| |
| +memberId: int |
| +isbn: string |
| |

+dueDate: Date

https://gamma.app/?utm_source=made-with-gamma

Week 16

Revision and Final Assessment

https://gamma.app/?utm_source=made-with-gamma

Revision and Final Assessment:
A Comprehensive Review

This presentation will provide a comprehensive overview of key C++ topics,
practical problem-solving techniques, and essential exam preparation

strategies.

https://gamma.app/?utm_source=made-with-gamma

Introduction to C++ and its Core Features

History and Origins Key Features

C++ evolved from the C programming language. It was designed Key features include object-oriented programming (OOP),

to be a powerful and versatile language for system programming generic programming, and memory management capabilities.

and application development.

https://gamma.app/?utm_source=made-with-gamma

Dafa llaf Coopenuet:
Pene segllation

Em——

Data liof pansert

Pe segllation

lj

Petief panset. Data Data panseft
Poraletck Per pataiction
Data type
Pataiciplls
————e

[—

Data type | Pers liaff pergeft Data Data panset
Pataic ipls l Per alicnes For sifietien
S ———

Data Types, Variables, and

Operators

Basic Data Types

C++ supports various
fundamental data types like int,
float, char, bool, etc. Each type
represents a specific kind of

data.

Operators

Variable Declaration

Variables are used to store data
in memory. They are declared
using the data type followed by

the variable name.

Operators are symbols that perform specific operations on variables and

values. Examples include arithmetic, logical, and relational operators.

https://gamma.app/?utm_source=made-with-gamma

Licrny and 1t—Elticy Paton Stulctues

Ths Loppfs [f] fas cornert inie)

lmmvt [etis Latps/catcalligocw).

pfs [ff forlunce_[aphigion it

Mowg lorls lafef [aetral]] jw,

Thi Loppfs Litne:_centect thie)
Howt loplis [ftoeg/oater/(opplictid

Howg let is late/ [natcal])gp)

For loops:: frar loops:
Fatt Jor: foraletve: for loople

Clat is fimat, forneddjpart

for Loppfs [f] (ar Lonner)
News let is latas{achutlell[[{jplou]

Nowg let is latps_arpilgor):.

Ths Liopfs |afef taulde(armeent)

Nowg lopis latas[aetral(at.ui).

Whiles loops:

For Lis statement{

Aby Ia: Lorpris,
Corver:: lopest,
Corvior ecalfiate

CE:

Control Structures: Conditional
Statements and Loops

1 Conditional Statements: These allow the program to execute

different code blocks based on specific conditions.

p) Loops: Loops repeatedly execute a block of code until a

certain condition is met. This is useful for repetitive tasks.

https://gamma.app/?utm_source=made-with-gamma

o Functions and Procedural
Programming

Reticante; gpopiatt ectpolctos.

Enput 4. Gresbiox:
Addyatios Compoasect
Retisuite: gpapias, eidictoo.

Functions are reusable blocks of code that perform a specific

Enput 2. Gresblex: Ty 1 task. They improve code organization and maintainability.
Adayativa Convjoscent Cattvout
‘ Raticanter gpogian elalores,

Enput &. Qiecblox:
Aot tan Canress
edtigalbc Comiceeccest

Retivcatar gosjtiat ccleloras,

Procedural Programming: This paradigm focuses on breaking

oo e p) a program into a sequence of steps, with functions

Adoyatto: Compoasert

Retvarter goafiac celdlores representing individual steps.

Ouput Seetiox
Actperie; Carcestar.
Powrenatlole clarriatores.

https://gamma.app/?utm_source=made-with-gamma

Arrays, Strings, and Pointers

Arrays Strings Pointers

Arrays store collections of elements of Strings are sequences of characters. C++ Pointers are variables that store memory
the same data type. They are used to provides built-in support for string addresses. They allow direct access to
efficiently store and access related data. manipulation, including concatenation data stored in memory, enhancing

and comparison. performance and flexibility.

https://gamma.app/?utm_source=made-with-gamma

Object-Oriented Programming Concepts

Classes
1 Blueprints for creating objects, defining data members and member functions.
Objects
2
Instances of a class, containing data and behavior defined by the class.
Inheritance
3
Creating new classes based on existing ones, inheriting properties and behaviors.
Polymorphism
4
Allowing objects of different classes to be treated as objects of a common type.
Encapsulation
5

Bundling data and methods together, hiding implementation details.

https://gamma.app/?utm_source=made-with-gamma

File I/0 and Exception Handling

File 1/0

1 Allows programs to interact with external files, reading data from them or writing data to them.

Exception Handling

Mechanisms for handling runtime errors and unexpected

events, ensuring program stability and robustness.

https://gamma.app/?utm_source=made-with-gamma

ANV VTS

500

500

540

N
o
o

100+

100

1.00

20

150

100

30

1100

Algorithm Analysis and Time
Complexity

O(n) O(log n)

Linear Logarithmic

Time complexity grows proportionally Time complexity increases slowly as

to the input size. input size increases.

O(n”2)

Quadratic

Time complexity grows quadratically

with the input size.

https://gamma.app/?utm_source=made-with-gamma

Practical Problem Solving and Coding Exercises

Fast lobell: ressllct Steter C¥ Regaram,101)
1159, értles : Seot Swrter Yat 146,443
Thdes-73ttes | Suop Irchmoty/ 408,253 + 937
113-5. Gtttes ! Sopp Rediam (Nickiagryleaus, NOS175/Cable
Thers Sfttes [Yeop Dpiill + = 1067
llens-8rites | Copp Moter = « S8
16:7 Srttes i Yeup Tirfer Myykerigs fall, 400, 352
49:8. Afttes ! Torsiall in Map/lanss
LB ngpe
48. 7 511.2 Toop (G:1) 2=15
13.4. 2211es : Wrup Wrion Mobigttes-iste, "6L7ustrad2, lor5d - 1160
13:6 25ttes ! Yoyp Tmrer Mal lros
23:7.231tes ! Yepp Tonto ML, aoecbl
23.8,23ttes | Tygp Poton Nevageeennertd, Pl T+, 308
22.6,2531es | Upolincion. Movad aps
25:8, 25ttes | Ungp Wirtc Qipy el) "ttald for <45, 4¢ - 108"
117 2:221tes | Vapp Tirtow S ircales
117 5:251%es | Soop Foter Inssititeed 00,154
137 G:2311es [Sax Cronol Yer destlind <1302 -
117 8:231tes | Senp Pater Clantfarainant M, sesestody , als47) 47 (s,,712
137 4:231les ! Sopp Soter Inssigling riestter = 459
Soop Forte Clamppter 484
157 6:281tes ! vgp o~ 1008
177 B: 23ites | Yogp frt talMvialie - 1082
137 6:23itas | Wsop Spots, lonls, treplessiant/dres, 6137 1;, 1087
127 8:251tes | Yupp for fs! lests, 007
157 6:231tes ! Soop Vyl. Shess
117 4273185~ CO0&.Operet, V160005, (0.00511es T-<Aflations, (endaspleg.corts)
18 lrest) poressstion)
137 16 Orter Connal farllase, at, Cnpnad, tist/tigliss
Sectity ind

N —— =

ehictort Wulerfore?

r (lars) .
Tesarits Crefervied

11 Clat tomew {Latae ey
L)

rexictiortroeety))

Code Examples Output Results

Practical code examples illustrating solutions to common Demonstration of program execution, displaying expected output

programming problems. and validating the solution.

https://gamma.app/?utm_source=made-with-gamma

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193

