
preencoded.png

Object Oriented Programming
Course Code: CSE-0613-2203

Md. Zahid Akon
Lecturer

Department of CSE

https://gamma.app/?utm_source=made-with-gamma

Implement object-
oriented programming
concepts like classes,
inheritance, and
polymorphism

Apply control structures,
functions, and modular
programming
techniques.

Understand the
foundational concepts
and syntax of C++
programming.

Develop reusable and

efficient solutions using

templates, STL, and

exception handling.

Utilize encapsulation,
abstraction, and dynamic
memory management
effectively.

Integrate all learned

concepts to design,

develop, and debug

complete projects.

CLO’S

01

02

03 06

05

04

preencoded.png

1. E. Balagurusamy, "Object-Oriented Programming with C++", Tata McGraw-

Hill (ISBN: 9781259029936)

2. Bjarne Stroustrup, "The C++ Programming Language", Addison-Wesley

(ISBN: 9780321563842)

3. Scott Meyers, "Effective C++", Addison-Wesley (ISBN: 9780321334879)

https://gamma.app/?utm_source=made-with-gamma

BRAIN STROMING

Lecture

Q&A

PRACTICAL EXCERSISE

INCLASS ASSESSMENT

GROUP WORK

Assessment

 Pattern

preencoded.png

Wee

k No.

Topics and Key Outcomes Teaching-Learning Strategies Assessment Strategies Alignment to

CLO

1 Introduction to C++: Basics of programming,

installing tools, writing the first program,

variables, and I/O.

Lecture, multimedia, hands-on practice Feedback, Q&A, simple

quiz

CLO1

2 Operators and Control Structures: Using

operators, if statements, and loops (for,

while).

Lecture, practical examples Feedback, Q&A, short

quiz

CLO2

3 Functions and Arrays: Creating functions,

passing values, recursion, and using 1D/2D

arrays.

Lecture, hands-on practice Midterm Quiz #1,

practice problems

CLO2

4 Introduction to OOP: Difference between

procedural and object-oriented programming,

basic class and object.

Lecture, group discussions Feedback, Q&A CLO3

5 Classes and Objects: Constructors, destructors,

member functions, and this pointer.

Lecture, problem-solving sessions Case Study #1,

Assignment #1

CLO3

6 Inheritance: Base/derived classes, types of

inheritance, and constructor/destructor chaining.

Lecture, multimedia Feedback, Q&A,

discussions

CLO4

7 Polymorphism: Function overloading, virtual

functions, abstract classes, and dynamic method

dispatch.

Lecture, group discussions Feedback, Q&A,

examples

CLO4

8 Encapsulation: Grouping data and controlling

access with private, protected, and public

modifiers.

Lecture, hands-on practice Feedback, Q&A, quizzes CLO3

9 Abstraction: Hiding implementation details and

designing abstract classes and interfaces.

Lecture, hands-on practice Feedback, Q&A, quizzes CLO3

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

10 Pointers and Memory: Working with pointers,

new/delete, and smart pointers.

Lecture, multimedia Feedback, Q&A, simple

assignments

CLO3

11 File Handling: Reading/writing files, working with

binary files, and random file access.

Lecture, practical examples Feedback, Q&A CLO3

12 Templates: Creating generic functions and classes

using templates.

Lecture, group exercises Feedback, short quiz CLO4

13 Standard Template Library (STL): Using

vectors, lists, maps, and common algorithms like

sort and find.

Lecture, hands-on practice Feedback, assignments CLO4

14 Exception Handling: Handling errors with try,

catch, and throw; creating custom exceptions.

Lecture, practical examples Feedback, Q&A CLO3

15 Advanced Concepts: Multiple inheritance,

namespaces, and typecasting (dynamic_cast,

static_cast).

Lecture, hands-on exercises Feedback, practice problems CLO4

16 Project Work: Planning, building, testing, and

reviewing a project like Library Management or

Banking System.

Group work, instructor

guidance

Project reviews, peer

evaluations

CLO5

17 Revision and Final Assessment: Review of all

topics, practical problems, and final exams.

Lecture, problem-solving

sessions

Final written and practical

exams

CLO5

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 1

Introduction to C++

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Introduction to C++

Welcome to your journey into the world of C++ programming. This

presentation provides a foundation in the fundamental concepts that will

empower you to build software and solve real-world problems.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Installing C++ Tools and IDE

Compiler

A compiler translates your C++ code into machine-readable

instructions. Popular compilers include g++ and clang.

IDE

An Integrated Development Environment (IDE) offers features

like code editing, debugging, and project management. Common

IDEs include Visual Studio Code, Code::Blocks, and CLion.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Writing Your First C++ Program

Code

#include

using namespace std;

int main() {

cout << "Hello,

World!";

return 0;

}

Output

Hello, World!

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Variables and Data Types

int

Integer values, whole

numbers, e.g., 10, -5, 0.

float, double

Floating-point numbers, with

decimal values, e.g., 3.14, -2.5.

char

Single characters, e.g., 'A', '?',

'%'.

string

Sequences of characters, e.g.,

"Hello", "C++".

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Arithmetic Operations and

Expressions

1
Addition

Adding two numbers, e.g., 5 + 3 = 8.

2
Subtraction

Subtracting one number from another,

e.g., 10 - 7 = 3.

3
Multiplication

Multiplying two numbers, e.g., 2 * 6 =

12.

4
Division

Dividing one number by another, e.g.,

15 / 5 = 3.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

User Input and Output (I/O)

Input

#include

using namespace std;

int main() {

int age;

cout << "Enter your age: ";

cin >> age;

cout << "You are " << age << " years

old.";

return 0;

}

Output

Enter your age: 25

You are 25 years old.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Control Structures: Conditional Statements

if

Executes a block of code if a condition is

true.

else if

Executes a block of code if the previous if

condition is false and a new condition is

true.

else

Executes a block of code if all previous if

and else if conditions are false.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Control Structures: Loops

1 while

Executes a block of code repeatedly as long as a condition is

true.

2 for

Executes a block of code a specified number of times.

3 do-while

Executes a block of code at least once, and then repeatedly

as long as a condition is true.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Functions and Subroutines

1
Function Definition

A function is a block of code that performs a specific task.

2
Function Call

The main program calls a function to execute its code.

3
Parameters

Functions can receive input values through parameters.

4
Return Value

Functions can return a value back to the calling program.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Conclusion and Next Steps

Congratulations! You've mastered the fundamentals of C++ programming.

Now explore more advanced concepts such as classes, objects, and data

structures. Practice regularly, experiment with new features, and build your

skills to become a confident C++ developer.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 2

Introduction to OOP

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Operators and Control
Structures in C++

This presentation will explore the fundamentals of C++ operators and control

structures, essential building blocks for programming.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Types of Operators in C++

Arithmetic Operators

Used for basic mathematical

operations.

Relational Operators

Used for comparing values.

Logical Operators

Used for combining logical

expressions.

Bitwise Operators

Used for manipulating

individual bits.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Arithmetic Operators

Addition (+)

Adds two operands.

Subtraction (-)

Subtracts the second operand from

the first.

Multiplication (*)

Multiplies two operands.

Division (/)

Divides the first operand by the second.

Modulo (%)

Returns the remainder of a division.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Relational Operators

Greater Than (>)

Checks if the first operand is greater

than the second.

Less Than (<)

Checks if the first operand is less

than the second.

Equal To (==)

Checks if two operands are equal.

Not Equal To (!=)

Checks if two operands are not

equal.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Logical Operators

1

Logical AND (&&)

Returns true if both operands are true.

2

Logical OR (||)

Returns true if at least one operand is true.

3

Logical NOT (!)

Reverses the logical state of an operand.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

If Statements in C++

1
Condition

2
True

Execute code block.

3
False

Skip code block.

An if statement executes a code block if a condition is true. If false, the block is skipped.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

If-Else Statements

1 Condition

2
True

Execute code block 1.

3
False

Execute code block 2.

If the condition is true, the first code block is executed; otherwise, the second code block is executed.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

For Loops in C++

1
Initialization

2
Condition

3
Increment

A for loop executes a block of code repeatedly, based on an initialization,

condition, and increment/decrement.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

While Loops in C++

Condition True

Execute code block.

False

Exit loop.

A while loop executes a block of code repeatedly as long as a condition remains true. Once the condition becomes false, the loop terminates.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Conclusion and Key Takeaways

Operators and control structures form the core of programming logic. By

mastering these concepts, you can create dynamic and efficient C++

programs. Continue to explore and experiment with these fundamental

building blocks to enhance your programming skills.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 3

Functions and Arrays in C++

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Functions and Arrays in C++

This presentation explores fundamental concepts of functions and arrays in

C++, providing a structured overview and practical examples.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Understanding Functions

Functions are reusable blocks of code that perform specific

tasks.

They enhance code organization and readability.

They promote modularity and code reusability.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Defining and Calling Functions

Defining a function involves specifying its name, return type, and

parameters.

Calling a function executes its code block.

int sum(int a, int b) {

return a + b;

}

int main() {

int result = sum(5, 3);

cout << "Sum: " << result;

return 0;

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Passing Arguments to Functions

Arguments are values passed to a function during its call.

They are used as input for the function's operations.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Returning Values from Functions

Functions can return a value using the return statement.

The returned value can be used in the calling code.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Accessing Array Elements

Arrays store collections of elements of the same data type.

Elements are accessed using their index, starting from 0.

int numbers[5] = {10, 20, 30, 40, 50};

cout << "Element at index 2: " <<

numbers[2];

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

2D Arrays: Representing Tabular Data

2D arrays are used for storing tabular data, such as matrices or

grids.

They consist of rows and columns, accessed using two indices.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Function Parameters: Passing by Value vs. Reference

Passing by value creates a copy of the argument, preventing

modification of the original.

Passing by reference allows direct modification of the original

argument.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Function Overloading: Multiple Functions with the Same
Name

Function overloading allows defining multiple functions with the

same name.

The compiler selects the correct function based on the

argument types.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Defining Overloaded Functions

Overloaded functions have the same name but different

parameter lists.

They enhance code reusability by providing different ways to

achieve the same result.

int sum(int a, int b) {

return a + b;

}

double sum(double a, double b) {

return a + b;

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 4

Introduction to OOP

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Introduction to Object-Oriented
Programming

This presentation explores the fundamental concepts of Object-Oriented

Programming (OOP), a powerful programming paradigm that provides a

structured approach to software development.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Procedural vs. Object-Oriented Programming

Procedural Programming

Focuses on procedures or functions. Data and operations are

separate. Data is passed to functions for processing.

Object-Oriented Programming

Emphasizes objects that encapsulate data and behavior. Objects

interact with each other through methods.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Key Concepts of OOP: Classes
and Objects

1 Class

A blueprint or template that

defines the structure and

behavior of an object.

2 Object

An instance of a class,

containing specific data

values and methods.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Defining a Class in C++

class Dog {

public:

string name;

int age;

void bark() {

cout << "Woof!" << endl;

}

};

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Creating Objects from a Class

Dog myDog;

myDog.name = "Buddy";

myDog.age = 3;

myDog.bark();

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Accessing Class Members

class Car {

public:

string model;

int year;

void start() {

cout << "Engine started." << endl;

}

};

int main() {

Car myCar;

myCar.model = "Ford Mustang";

myCar.year = 2023;

myCar.start();

return 0;

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Constructors and Destructors

class Student {

public:

string name;

int rollNo;

Student(string n, int r) {

name = n;

rollNo = r;

}

~Student() {

cout << "Destructor called for " << name << endl;

}

};

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Inheritance: Extending Classes

class Animal {

public:

void eat() {

cout << "Animal eating." << endl;

}

};

class Dog : public Animal {

public:

void bark() {

cout << "Woof!" << endl;

}

};

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Polymorphism: Overriding Methods

class Shape {

public:

virtual void draw() = 0;

};

class Circle : public Shape {

public:

void draw() {

cout << "Drawing a circle." << endl;

}

};

class Square : public Shape {

public:

void draw() {

cout << "Drawing a square." << endl;

}

};

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Conclusion and Key Takeaways

OOP promotes code reusability, modularity, and maintainability.

Understanding classes, objects, inheritance, and polymorphism empowers

you to build complex and robust software applications.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 5

Classes and Objects

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Classes and Objects:
Constructors, Destructors,
Member Functions, and this

Pointer

Explore the fundamental building blocks of object-oriented programming in

C++, gaining a deep understanding of classes, objects, and their associated

concepts.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Introduction to Classes and Objects

Classes

Blueprints or templates that define the structure and behavior

of objects. They encapsulate data and functions.

Objects

Instances of a class, representing real-world entities. They hold

data and can execute the class's functions.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Defining a Class

class Car {

public:

string brand;

string model;

int year;

void showCar() {

cout << "Brand: " << brand << endl;

cout << "Model: " << model << endl;

cout << "Year: " << year << endl;

}

};

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Constructors and Destructors

1 Constructors

Special member functions

that initialize objects when

they are created. They have

the same name as the class.

2 Destructors

Special member functions

that clean up resources when

objects are destroyed. They

have the same name as the

class prefixed with a tilde (~).

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Member Functions

class Car {

public:

Car(string b, string m, int y) { // Constructor

brand = b;

model = m;

year = y;

}

void showCar() { // Member function

cout << "Brand: " << brand << endl;

cout << "Model: " << model << endl;

cout << "Year: " << year << endl;

}

};

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Access Specifiers: public, private, protected

public

Members accessible from anywhere,

including outside the class.

private

Members accessible only within the

class itself.

protected

Members accessible within the class

and its derived classes.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

The this Pointer

Context

A special pointer available inside

member functions that points to the

current object.

Purpose

Used to differentiate between

member variables and local variables

with the same name.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Class Inheritance

1 Base Class

The parent class from which other classes inherit properties

and behaviors.

2 Derived Class

The child class that inherits from the base class, extending

its functionality.

3 Reusability

Inheritance promotes code reuse by allowing derived classes

to use the base class's members.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Polymorphism and Virtual Functions

Virtual Functions

Member functions declared with the keyword "virtual" in the base class.

Overriding

Derived classes can provide their own implementations of virtual functions, allowing for dynamic polymorphism.

Late Binding

The actual function to be called is determined at runtime, based on the object type.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Code Examples and Live Demonstrations

Let's dive into practical examples and live demonstrations to solidify your understanding of these essential C++ concepts.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 6

Inheritance

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Inheritance in C++

Inheritance is a powerful C++ concept that enables code reusability and

modularity by creating relationships between classes. In this presentation, we

will explore inheritance basics, its various types, and key aspects like

constructor/destructor chaining and polymorphism.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Introduction to Inheritance: Defining Base and Derived
Classes

Base Class

The parent class that defines common characteristics and

functions. In our example, 'Animal' is the base class.

Derived Class

A class that inherits from a base class, gaining its attributes and

functions. 'Dog' is a derived class inheriting from 'Animal'.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Types of Inheritance

Single Inheritance

A single derived class inherits from

one base class. For example, 'Dog'

inherits from 'Animal'.

Multiple Inheritance

A derived class inherits from multiple

base classes. For example, a 'Car' class

might inherit from 'Vehicle' and

'Engine' classes.

Hierarchical Inheritance

Multiple derived classes inherit from a

single base class. For example, 'Dog',

'Cat', and 'Bird' could all inherit from

'Animal'.

Multilevel Inheritance

A derived class inherits from a base

class, and another derived class

inherits from the first derived class.

For example, a 'SportCar' class could

inherit from 'Car', which inherits from

'Vehicle'.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Inheritance and Access Specifiers

Public

Members declared public in the base

class can be accessed directly by derived

classes and external code.

Protected

Members declared protected can be

accessed by derived classes, but not by

external code.

Private

Members declared private are not

accessible by derived classes or external

code.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Constructors and Destructors in
Inheritance

1 Constructor Chaining

Derived class constructors

automatically call the base

class constructor.

2 Destructor Execution

Order

Destructors are called in the

reverse order of constructor

execution.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Diagram: Visualizing Inheritance Relationships and
Hierarchy

1

Animal

Base Class

2
Dog

Derived Class

3
Cat

Derived Class

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Inheritance in Code: Examples and Syntax

#include <iostream>

class Shape {

public:

Shape(int sides) : sides(sides) {}

void printSides() const { std::cout << "Sides: " << sides << std::endl; }

protected:

int sides;

};

class Triangle : public Shape {

public:

Triangle() : Shape(3) {}

void printType() const { std::cout << "Shape: Triangle" << std::endl; }

};

int main() {

Triangle t;

t.printType();

t.printSides(); // Accessing protected member

return 0;

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Polymorphism and Virtual Functions in Inheritance

Runtime Polymorphism

The ability to call different functions based on the object type at

runtime.

Virtual Functions

Functions declared with the 'virtual' keyword in the base class

allow for runtime polymorphism.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Advantages and Use Cases of

Inheritance in C++

1
Code Reusability

Reduce duplicate code by inheriting

from existing classes.

2
Modularity

Create independent and reusable code

modules.

3
Extensibility

Easily add new features to existing

classes.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Conclusion: Key Takeaways and
Further Exploration

Inheritance is a cornerstone of object-oriented programming in C++. It

promotes code reusability, modularity, and extensibility, making code more

organized and efficient. Dive deeper into inheritance topics like abstract

classes, virtual destructors, and multiple inheritance to master its full

potential.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 7

Polymorphism

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Polymorphism in C++

Polymorphism, a core concept in object-oriented programming, empowers

code to adapt to different situations and types of objects. This presentation

explores the key facets of polymorphism in C++: function overloading, virtual

functions, abstract classes, and dynamic method dispatch.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Function Overloading

Same Name, Different Parameters

Function overloading allows defining multiple functions with the

same name but distinct parameter lists. This enables using a

single function name for diverse functionalities.

Compile-Time Resolution

The C++ compiler determines the appropriate function based on

the parameters provided during the function call.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Function Overloading Example

#include <iostream>

using namespace std;

int add(int x, int y) {

return x + y;

}

double add(double x, double y) {

return x + y;

}

int main() {

int result1 = add(2, 3); // Calls add(int, int)

double result2 = add(2.5, 3.5); // Calls add(double, double)

cout << "result1: " << result1 << endl;

cout << "result2: " << result2 << endl;

return 0;

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Virtual Functions

1 Base Class Function

Declaring a function as

virtual in the base class

enables derived classes to

provide their own

implementations.

2 Runtime Polymorphism

Virtual functions enable

runtime polymorphism,

where the specific function

to execute is determined at

runtime.

3 Overriding Mechanism

Derived classes can override virtual functions, providing unique

behavior for their objects.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Virtual Functions Example

#include <iostream>

using namespace std;

class Shape {

public:

virtual void draw() {

cout << "Drawing a generic shape" << endl;

}

};

class Circle : public Shape {

public:

void draw() {

cout << "Drawing a circle" << endl;

}

};

int main() {

Shape* shape1 = new Shape();

Shape* shape2 = new Circle();

shape1->draw(); // Calls Shape::draw()

shape2->draw(); // Calls Circle::draw()

return 0;

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Abstract Classes

1 Uninstantiable Base

Class

Abstract classes cannot be

instantiated, acting as

blueprints for derived

classes.

2 Pure Virtual Functions

Abstract classes contain pure

virtual functions, which must

be implemented by derived

classes.

3 Encapsulation of Behavior

Abstract classes enforce a common interface and ensure derived

classes implement specific behaviors.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Abstract Classes Example

#include <iostream>

using namespace std;

class Animal {

public:

virtual void makeSound() = 0; // Pure virtual function

};

class Dog : public Animal {

public:

void makeSound() {

cout << "Woof!" << endl;

}

};

int main() {

// Animal animal; // Error: Cannot instantiate abstract class

Dog dog;

dog.makeSound();

return 0;

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Dynamic Method Dispatch

1
Runtime Resolution

2

Virtual Function Table (vtable)

Dynamic method dispatch utilizes a virtual function table (vtable) to determine

the correct function implementation based on the object's type at runtime.

3

Polymorphic Behavior

This process enables polymorphic behavior, where the same code can

interact with objects of different derived classes in a consistent way.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Dynamic Method Dispatch Example

#include <iostream>

using namespace std;

class Shape {

public:

virtual void draw() {

cout << "Drawing a generic shape" << endl;

}

};

class Circle : public Shape {

public:

void draw() {

cout << "Drawing a circle" << endl;

}

};

class Square : public Shape {

public:

void draw() {

cout << "Drawing a square" << endl;

}

};

int main() {

Shape* shapes[2];

shapes[0] = new Circle();

shapes[1] = new Square();

for (int i = 0; i < 2; i++) {

shapes[i]->draw();

}

return 0;

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Polymorphism: A Visual Summary

Function Overloading

Multiple functions with same name,

different parameters, resolved at compile-

time.

Virtual Functions

Base class functions that can be

overridden by derived classes, resolved at

runtime.

Abstract Classes

Uninstantiable base classes with pure

virtual functions, enforcing common

interfaces for derived classes.

Dynamic Method Dispatch

Resolving the appropriate function

implementation at runtime, based on the

object's type, using vtables.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 8

Encapsulation

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Encapsulation: Grouping Data
and Access Control

This presentation will explore encapsulation, a fundamental concept in object-

oriented programming (OOP) that enhances code organization, security, and

maintainability. It involves grouping data and the functions that operate on

that data within a single unit, a class, and controlling access to this data.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Introduction to Encapsulation

Data Hiding

Encapsulation helps protect data from unauthorized access and

modification by making it private, ensuring data integrity and

consistency.

Code Organization

It promotes modularity and code reusability by grouping related

data and functions together, improving code structure and

maintainability.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Data Encapsulation: Private, Protected, and Public

1

Private

Only accessible within the class itself.

2
Protected

Accessible within the class and its derived classes.

3
Public

Accessible from anywhere, even outside the class.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Accessing Class Members: Public vs. Private

Private Members

Cannot be directly accessed from outside the class.

Public Members

Can be accessed directly from outside the class. These are

typically getter and setter functions to control access to private

data.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Demonstration: Encapsulation in C++

#include

class Employee {

private:

int empId;

std::string name;

public:

void setEmpId(int id) { empId = id; }

int getEmpId() { return empId; }

void setName(std::string n) { name = n; }

std::string getName() { return name; }

};

int main() {

Employee employee;

employee.setEmpId(123);

employee.setName("Alice");

std::cout << "Employee ID: " << employee.getEmpId() << std::endl;

std::cout << "Employee Name: " << employee.getName() << std::endl;

return 0;

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Benefits of Encapsulation

1 Data Protection

Shields internal data from unauthorized access and

modification, ensuring data integrity.

2 Modularity

Encapsulation promotes modularity, making code easier to

understand, maintain, and debug.

3 Code Reusability

Encapsulated classes can be reused across different projects,

reducing code duplication.

4 Flexibility

Encapsulation allows for changes to internal implementation

without affecting external code.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Encapsulation and Information Hiding

1

Data Hiding

Key concept behind encapsulation. Prevents direct access to internal data members, ensuring data integrity.

2

Controlled Access

Provides controlled access to data through publicly exposed methods (getter and

setter functions).

3

Maintainability

Simplifies code maintenance by allowing changes to internal

implementation without impacting external code.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Practical Example: Encapsulating a
Bank Account

Data Members

account number, balance, etc.

Public Methods

deposit(), withdraw(), getBalance()

Information Hiding

Internal data members are private,

accessed only through public methods.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Designing Encapsulated Classes

1 Define the data members, representing the state of the

object.

2 Implement the public methods to control access to data

members and provide functionality.

3 Consider access modifiers (private, protected, public) to

determine what parts of the class are accessible from

outside.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Conclusion and Key Takeaways

Encapsulation is a fundamental OOP concept that promotes data protection,

code organization, reusability, and maintainability. By carefully defining data

and methods, and controlling access through public interfaces, developers can

build robust and maintainable software systems. Understanding and applying

encapsulation principles is essential for building reliable and scalable

software.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 9

Abstraction

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Abstraction in C++

This presentation will cover the concept of abstraction in C++, exploring

abstract classes and interfaces.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

What is Abstraction?

Hiding Complexity

Abstraction simplifies complex systems by hiding

implementation details. You only interact with the essential

features.

Focus on Behavior

It emphasizes what an object does, rather than how it does it.

It's like using a remote control without knowing how the TV

works.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Importance of Abstraction

Code Reusability

Abstraction allows you to

create reusable components,

reducing code duplication and

improving maintainability.

Flexibility

Abstraction makes code more

adaptable to changes. You can

easily modify implementation

details without affecting the

overall behavior.

Maintainability

By separating concerns, abstraction makes it easier to understand,

debug, and modify complex systems.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Abstract Classes in C++

1

Blueprint

An abstract class acts as a blueprint for derived classes.

2

Incomplete Implementation

It defines the structure and behavior but doesn't provide all the details.

3

Cannot be Instantiated

You cannot create objects directly from an abstract class.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Defining Abstract Classes

class Shape {

public:

virtual double area() = 0; // Pure virtual

function

};

The keyword abstract indicates an abstract class. Pure virtual functions are

declared but not defined.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Pure Virtual Functions

virtual double area() = 0;

Pure virtual functions have no definition within the abstract class. Derived

classes must provide implementations.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Interfaces in C++

class Drawable {

public:

virtual void draw() = 0;

};

Interfaces are like abstract classes that only contain pure virtual functions.

They define a contract that derived classes must adhere to.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Implementing Interfaces

class Circle : public Drawable {

public:

void draw() override {

// Implementation for drawing a circle

}

};

Concrete classes inherit from interfaces and provide implementations for the

interface methods. The override keyword ensures proper implementation.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Benefits of Abstraction

Modularity

Abstraction promotes

modularity, breaking down large

programs into smaller, more

manageable components.

Polymorphism

Abstraction enables

polymorphism, allowing objects

of different classes to be treated

in a uniform way.

Extensibility

Abstraction allows for easy extensibility, adding new functionalities

without modifying existing code.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Designing Abstract Classes and Interfaces

1
Identify Common Behavior

Determine the shared functionalities that different classes will have.

2

Define Abstract Class or Interface

Create an abstract class or interface with pure virtual functions for the common

behavior.

3

Implement Concrete Classes

Create concrete classes that inherit from the abstract class or

interface and provide implementations for the virtual

functions.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 10

Pointers and Memory

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Pointers and Memory: Working
with pointers, new/delete, and
smart pointers

This presentation delves into the fascinating world of pointers and their role

in managing memory in C++. We'll explore fundamental concepts, dynamic

memory allocation techniques, and the power of smart pointers for enhanced

memory management.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Understanding Pointers: Fundamentals and Declarations

Pointer Definition

A pointer is a variable that stores a memory address, essentially

a location in memory where data is stored.

Declaration Syntax

data_type *pointer_name; // Declaring a

pointer to a data type

int *ptr; // Pointer to an

integer

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Pointer Arithmetic and Memory Addresses

Basic Operations

Pointers support arithmetic operations like addition and

subtraction, allowing you to traverse memory locations.

Example

int arr[5] = {1, 2, 3, 4, 5};

int *ptr = arr;

ptr += 2; // Pointer now points to arr[2]

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Dynamic Memory Allocation with new and delete

Dynamic Allocation

The `new` operator allocates memory dynamically on the heap

at runtime, allowing for flexible memory management.

Deallocating Memory

int *ptr = new int;

*ptr = 10; // Assign a value to the

allocated memory

delete ptr; // Deallocate the memory

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Dangling Pointers and Memory
Leaks

1 Dangling Pointers

A pointer that points to

memory that has been

deallocated is a dangling

pointer, leading to

unpredictable program

behavior.

2 Memory Leaks

Failure to deallocate

dynamically allocated

memory results in memory

leaks, gradually consuming

available memory and

potentially causing crashes.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Smart Pointers: unique_ptr and shared_ptr

unique_ptr

Provides exclusive ownership of a resource, ensuring that only

one pointer can access it, preventing memory leaks and dangling

pointers.

shared_ptr

Allows multiple pointers to share ownership of a resource using

reference counting, enabling safe sharing of dynamically

allocated memory.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Comparison of Smart Pointers:
Advantages and Use Cases

Feature unique_ptr shared_ptr

Ownership Exclusive Shared

Use Case Single ownership,

resource

management

Shared resources,

complex data

structures

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Pointer Safety and Best Practices

Initialization

Always initialize pointers before

using them to avoid unexpected

behavior.

Ownership

Clearly define pointer ownership

to prevent unintended access

and avoid memory leaks.

Deallocate

Explicitly deallocate dynamically allocated memory using `delete` or

smart pointers to prevent memory leaks.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Pointer Visualization: Diagrams
and Illustrations

Pointer Direction

Arrows visually represent the

direction a pointer points, indicating

the memory location being

referenced.

Memory Space

Diagrams of memory blocks

demonstrate how pointers interact

with memory addresses and

allocated data.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Conclusion and Q&A

Pointers are fundamental to C++ programming, providing powerful memory management capabilities. By understanding pointers,

dynamic memory allocation, and the advantages of smart pointers, you can write robust and efficient code. Any questions?

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 11

File Handling

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

File Handling in C++: Reading,
Writing, and Beyond

This presentation explores the fundamentals of file handling in C++, covering

essential techniques for reading, writing, and manipulating files, including

binary files and random access.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Understanding File Streams: `ifstream`, `ofstream`, and
`fstream`

Input File Streams (`ifstream`)

Used for reading data from a file.

Output File Streams (`ofstream`)

Used for writing data to a file.

File Streams (`fstream`)

Used for both reading and writing to a

file.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Reading Files: `getline()`,
`read()`, and Handling File Errors

1 1. `getline()`

Reads an entire line from the

file, including whitespace.

2 2. `read()`

Reads a specified number of

bytes from the file.

3 3. Error Handling

Use `fail()` or `bad()` to check for errors while reading.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Writing Files: `<<` operator, `write()`, and Controlling File
Output

`<<` operator

Writes formatted data to the file (similar

to outputting to the console).

`write()`

Writes a specified number of bytes of

data to the file.

Controlling Output

Use manipulators like `endl` to control

line breaks and formatting.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Working with Binary Files:
`open()` with `ios::binary`

To work with binary files, use the `ios::binary` flag when opening the file with

`open()`.

ofstream outfile("binary_data.bin", ios::binary);

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Reading and Writing Binary Data

Reading Binary Data

Use `read()` to read binary data directly from the file.

Writing Binary Data

Use `write()` to write binary data directly to the file.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Random File Access: `seekg()`,
`seekp()`, and `tellg()`/`tellp()`

1 1. `seekg()`

Sets the file pointer for

reading to a specific position.

2 2. `seekp()`

Sets the file pointer for

writing to a specific position.

3 3. `tellg()`/`tellp()`

Returns the current position of the file pointer for reading/writing.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Practical Examples: File I/O for
Text and Binary Data

Let's explore real-world scenarios where file handling is essential,

demonstrating code examples for working with text files and binary files.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Diagram: C++ File Handling Process Flow

This diagram illustrates the typical process of file handling in C++, from opening and accessing files to reading, writing, and closing

them.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Conclusion: Best Practices and Takeaways

1 1. File Error Handling

Always check for errors after file

operations and handle them

appropriately.

2 2. File Closing

Make sure to close files using

`close()` after you've finished using

them.

3 3. File Permissions

Understand and manage file

permissions to ensure proper

access and security.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 12

Templates

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Templates: Creating Generic
Functions and Classes

Templates are powerful tools in C++ that enable the creation of generic

functions and classes, allowing code to work with multiple data types without

requiring explicit specialization. This presentation will explore the

fundamentals of templates, their syntax, use cases, and the advantages they

offer.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Introduction to Templates

Templates provide a mechanism for writing code that can operate on different data types without the need to write separate code for

each type. This makes code reusable and adaptable to different situations.

Function Templates

Generic functions that can work with various data types.

Class Templates

Generic classes that can hold different data types.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Need for Templates

Before templates, developers had to write separate functions or classes for

each data type, leading to code duplication and maintenance difficulties.

Templates solve this by providing a single, generic definition.

1 Code Reusability

Eliminates redundant code

for different data types.

2 Flexibility and

Adaptability

Allows code to work with

various data types without

modification.

3 Improved Maintainability

Simplifies updates and bug fixes across different data types.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Syntax and Declaration of
Function Templates

Function templates use the 'template' keyword followed by angle brackets (<

>) enclosing type parameters, which represent the data types that the

function can handle.

template

T add(T a, T b) {

return a + b;

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Syntax and Declaration of Class

Templates

Class templates follow a similar syntax to function templates, using the

'template' keyword and angle brackets to define type parameters that

represent the data types the class can hold.

template

class Stack {

private:

T *data;

int top;

public:

// Methods for stack operations

};

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Template Type Parameters

Type parameters are placeholders for specific data types. They can be any

valid C++ data type, such as int, double, char, or custom user-defined types.

They are used to represent different data types in the template's definition.

template

T add(T a, U b) {

return a + b;

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Template Function Arguments

When calling a template function, the compiler automatically deduces the

data type of the arguments passed to the function. This allows for flexibility in

using the same template function with different data types.

int x = 5;

double y = 2.5;

int sum1 = add(x, y); // Compiles and works correctly

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Template Specialization

Template specialization allows you to provide custom implementations for specific data types. This is useful when the generic implementation

does not meet the requirements for a particular data type.

template<>

int add(int a, int b) {

return a * b; // Specialized implementation for int

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Advantages and Use Cases of

Templates

Templates provide significant advantages for C++ development, promoting code

reusability, efficiency, and flexibility.

Code Reusability

Reduces code duplication and

maintenance effort.

Type Safety

Ensures type consistency and

prevents potential errors.

Efficiency

Eliminates the need for multiple

function or class definitions for

different data types.

Genericity

Allows code to work with various

data types without modification.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Diagram: Visual Representation of Templates

Templates can be visualized as a generic blueprint that can be instantiated with different data types, creating specialized versions of the function or class

for each specific type.

1
Template

2
int

int version

3
double

double version

4
char

char version

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 13

Standard Template Library (STL)

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Standard Template Library (STL):
A Powerful C++ Tool

Dive into the powerful capabilities of the Standard Template Library (STL) in

C++ programming.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Why STL Matters: A Powerful C++ Toolkit

Pre-built Data Structures

STL provides a collection of pre-built and

highly optimized data structures, like

vectors, lists, and maps.

Generic Programming

STL allows you to write code that works

with any data type, promoting code

reusability and reducing development

time.

Efficient Algorithms

STL offers a wide range of algorithms for

sorting, searching, transforming, and

manipulating data, simplifying complex

operations.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Exploring STL Containers:
Vectors, Lists, Maps

1 Vector

Dynamically resizable arrays

that store elements in

contiguous memory

locations.

2 List

Doubly-linked lists where

elements are linked to their

neighbors, allowing efficient

insertion and deletion at any

position.

3 Map

Associative containers that store key-value pairs, allowing efficient

lookups based on unique keys.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Vector: A Dynamically Resizable Array

Definition

std::vector<data_type>

vector_name;

Initialization

std::vector<int> numbers = {1,

2, 3};

Common Operations

push_back(), pop_back(), insert(), erase()

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Visualizing Vector Operations

// Example code:

std::vector<int> numbers = {1, 2, 3};

numbers.push_back(4); // Adds 4 to the end

numbers.insert(numbers.begin() + 1, 5); // Inserts 5

at index 1

numbers.erase(numbers.begin() + 2); // Removes element

at index 2

numbers.pop_back(); // Removes the last element

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

List: A Flexible Doubly-Linked List

Definition

std::list<data_type> list_name;

Initialization

std::list<int> numbers = {1, 2, 3};

Common Operations

push_front(), push_back(), insert(),

remove()

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Understanding List Operations

// Example code:

std::list<int> numbers = {1, 2, 3};

numbers.push_front(0); // Adds 0 to the beginning

numbers.push_back(4); // Adds 4 to the end

numbers.insert(numbers.begin(), 5); // Inserts 5 at

the beginning

numbers.remove(2); // Removes all instances of 2

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Map: Key-Value Pair Storage

Definition

std::map<key_type, value_type>

map_name;

Initialization

std::map<std::string, int>

ages = {{"John", 30}, {"Jane",

25}};

Common Operations

insert(), find(), erase()

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Navigating Map Operations

// Example code:

std::map<std::string, int> ages = {{"John", 30},

{"Jane", 25}};

ages.insert({"Peter", 28}); // Adds a new key-value

pair

auto it = ages.find("John"); // Finds the key "John"

if (it != ages.end()) {

ages.erase(it); // Removes the entry with the key

"John"

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Essential STL Algorithms: sort,
find, accumulate

sort()

Sorts the elements of a range in

ascending order.

find()

Searches for a specific value in a

range.

accumulate()

Calculates the sum of the elements

in a range.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 14

Exception Handling

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Exception Handling in C++

Exception handling is a crucial part of C++ programming, allowing for graceful

error management and robust application development. This presentation

dives into the fundamentals of exception handling in C++, exploring the 'try,'

'catch,' and 'throw' keywords, as well as the creation of custom exceptions.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Why Exception Handling?

Preventing Program Crashes

Unhandled exceptions can lead to abrupt program termination,

interrupting the flow of execution and potentially causing data

loss.

Enhanced User Experience

Exception handling allows for controlled error handling,

providing informative messages and enabling programs to

continue operation even in the face of errors.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

The try-catch Block

try {

// Code that might throw an exception

} catch (const std::exception& e) {

// Handle the exception

std::cerr << "Error: " << e.what() << std::endl;

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

The throw Keyword

if (x == 0) {

throw std::runtime_error("Division by zero error!");

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Creating Custom Exception
Classes

class MyCustomException : public std::exception {

public:

const char* what() const noexcept override {

return "My custom exception occurred.";

}

};

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Handling Multiple Exceptions

try {

// Code that might throw different exceptions

} catch (const std::runtime_error& e) {

// Handle runtime errors

} catch (const std::invalid_argument& e) {

// Handle invalid arguments

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Nested try-catch Blocks

try {

try {

// Inner code that might throw an exception

} catch (const std::exception& e) {

// Handle the exception at the inner level

}

} catch (const std::exception& e) {

// Handle the exception at the outer level

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

The finally Block

try {

// Code that might throw an exception

} catch (const std::exception& e) {

// Handle the exception

} finally {

// Cleanup code that will always execute

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Best Practices

1 1. Keep it Specific

Catch only the exceptions

you expect and handle them

appropriately.

2 2. Log and Document

Log exceptions for debugging

and document the exception

handling strategy in your

code.

3 3. Avoid Empty Catch Blocks

Always handle exceptions explicitly, even if it's to re-throw them for

higher-level handling.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Exception Handling Workflow

1

Try Block

Code that may throw exceptions

2
Throw Exception

If an error occurs

3
Catch Block

Handles the exception

4
Finally Block

Code that always executes

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 15

Advanced Concepts

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Advanced Concepts in C++

This presentation will delve into advanced C++ concepts, including multiple

inheritance, namespaces, and typecasting. These concepts empower

developers to build robust and maintainable software.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Introduction to Multiple Inheritance

Concept

Multiple inheritance allows a derived class to inherit properties

and methods from multiple base classes.

Example

Imagine a class "Car" that inherits from "Vehicle" and "Engine"

classes. It combines features from both base classes.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Diagram: Syntax for Multiple
Inheritance

class Car : public Vehicle, public Engine {

// ... class members

};

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Benefits and Challenges of

Multiple Inheritance

1 Reusability

Avoids code duplication by

inheriting functionality from

multiple sources.

2 Flexibility

Allows for complex

relationships between

classes, providing more

options for code design.

3 Diamond Problem

Can lead to ambiguity when

multiple base classes have

the same member name.

4 Complexity

Can introduce challenges in

understanding and debugging

code due to intricate

inheritance structures.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Namespaces: Organizing Code and

Avoiding Name Conflicts

Purpose

Namespaces group related classes,

functions, and variables, providing

a logical structure for code and

preventing name collisions.

Example

Using the "std" namespace for

standard library components helps

avoid conflicts with user-defined

names.

Benefit

Namespaces make code more readable, maintainable, and easier to

collaborate on.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Diagram: Namespace
Declarations and Usage

namespace MyNamespace {

class MyClass {

// ... class members

};

}

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Static Casting: Explicit Type
Conversion

Syntax

static_cast<target_type>(source_val

ue)

Caution

Static casts are not type-safe and can

lead to runtime errors if the

conversion is invalid.

Example

Converting an integer to a floating-

point number.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Diagram: Static Cast Example

int x = 10;

double y = static_cast(x);

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Dynamic Casting: Run-time Type Identification

1

Purpose

Dynamic casts are used to perform type conversions based on runtime

type information, preventing errors.

2

Syntax

dynamic_cast<target_type>(source_object)

3

Result

Returns a pointer to the target type if successful, otherwise returns

nullptr.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Diagram: Dynamic Cast Example

Base* basePtr = new Derived();

Derived* derivedPtr = dynamic_cast(basePtr);

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 16

Project Work

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Project Work: Planning, Building,
Testing, and Reviewing a Project

Welcome to this comprehensive guide on project work, covering essential

stages from planning to deployment and review. We'll explore best practices

for creating successful software projects using a library management system

as an example. Prepare to gain insights into the lifecycle of software

development.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Introduction to Project Management

What is Project Management?

Project management is the process of planning, organizing, and

managing resources to achieve a specific goal.

Key Concepts

Scope, schedule, budget, resources, risk, communication,

quality, and stakeholders are key concepts to consider.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Planning Phase: Requirements
Gathering and Scope Definition

Understanding User Needs

Gathering detailed requirements

through interviews, surveys, and

workshops.

Defining Project Scope

Outlining the project's

boundaries, deliverables, and

milestones.

Creating a Project Plan

Developing a timeline, budget, and resource allocation plan.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Design Phase: Architectural Diagrams and UML Modeling

System Architecture

Defining high-level components and their

interactions.

Database Design

Modeling data structures and relationships

for efficient storage and retrieval.

User Interface Design

Creating wireframes and prototypes for

user interaction.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Development Phase: Coding and
Implementation in C++

1 Coding in C++: Choosing appropriate data structures,

algorithms, and libraries.

2 Unit Testing: Writing tests for individual functions and

modules.

3 Integration Testing: Testing the interaction between

different components.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Testing Phase: Unit Testing, Integration

Testing, and End-to-End Testing

Unit Testing

Testing individual units of code in isolation.

Integration Testing

Testing the interaction between different components.

End-to-End Testing

Testing the entire system from start to finish, simulating real-world scenarios.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Deployment Phase: Releasing the Application

1

Build

Compiling and packaging the application.

2
Deploy

Installing the application on the server.

3
Test

Running tests in the production environment.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Maintenance Phase: Bug Fixes and Feature Updates

1
Bug Fixes

Addressing reported bugs and defects.

2
Feature Updates

Adding new features and functionality based on user needs.

3
Security Patches

Implementing security updates and fixes.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Project Review: Lessons Learned

and Continuous Improvement

1
Review Project Metrics

Analyze project performance, budget,

and schedule.

2
Identify Lessons Learned

Document best practices and areas for

improvement.

3
Continuously Improve

Apply lessons learned to future projects.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Diagram: Class Diagram for a Library Management System

+-----------------+

| Book |

+-----------------+

| +isbn: string |

| +title: string |

| +author: string |

| +availability: boolean |

+-----------------+

+-----------------+

| Member |

+-----------------+

| +memberId: int |

| +name: string |

| +address: string |

+-----------------+

+-----------------+

| Loan |

+-----------------+

| +loanId: int |

| +memberId: int |

| +isbn: string |

| +dueDate: Date |

+-----------------+

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Week 16

Revision and Final Assessment

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Revision and Final Assessment:
A Comprehensive Review

This presentation will provide a comprehensive overview of key C++ topics,

practical problem-solving techniques, and essential exam preparation

strategies.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Introduction to C++ and its Core Features

History and Origins

C++ evolved from the C programming language. It was designed

to be a powerful and versatile language for system programming

and application development.

Key Features

Key features include object-oriented programming (OOP),

generic programming, and memory management capabilities.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Data Types, Variables, and

Operators

Basic Data Types

C++ supports various

fundamental data types like int,

float, char, bool, etc. Each type

represents a specific kind of

data.

Variable Declaration

Variables are used to store data

in memory. They are declared

using the data type followed by

the variable name.

Operators

Operators are symbols that perform specific operations on variables and

values. Examples include arithmetic, logical, and relational operators.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Control Structures: Conditional
Statements and Loops

1 Conditional Statements: These allow the program to execute

different code blocks based on specific conditions.

2 Loops: Loops repeatedly execute a block of code until a

certain condition is met. This is useful for repetitive tasks.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Functions and Procedural
Programming

Functions are reusable blocks of code that perform a specific

task. They improve code organization and maintainability.

Procedural Programming: This paradigm focuses on breaking

a program into a sequence of steps, with functions

representing individual steps.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Arrays, Strings, and Pointers

Arrays

Arrays store collections of elements of

the same data type. They are used to

efficiently store and access related data.

Strings

Strings are sequences of characters. C++

provides built-in support for string

manipulation, including concatenation

and comparison.

Pointers

Pointers are variables that store memory

addresses. They allow direct access to

data stored in memory, enhancing

performance and flexibility.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Object-Oriented Programming Concepts

1

Classes

Blueprints for creating objects, defining data members and member functions.

2
Objects

Instances of a class, containing data and behavior defined by the class.

3
Inheritance

Creating new classes based on existing ones, inheriting properties and behaviors.

4
Polymorphism

Allowing objects of different classes to be treated as objects of a common type.

5
Encapsulation

Bundling data and methods together, hiding implementation details.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

File I/O and Exception Handling

1

File I/O

Allows programs to interact with external files, reading data from them or writing data to them.

2

Exception Handling

Mechanisms for handling runtime errors and unexpected

events, ensuring program stability and robustness.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Algorithm Analysis and Time

Complexity

O(n)
Linear

Time complexity grows proportionally

to the input size.

O(log n)
Logarithmic

Time complexity increases slowly as

input size increases.

O(n^2)
Quadratic

Time complexity grows quadratically

with the input size.

https://gamma.app/?utm_source=made-with-gamma

preencoded.png

Practical Problem Solving and Coding Exercises

Code Examples

Practical code examples illustrating solutions to common

programming problems.

Output Results

Demonstration of program execution, displaying expected output

and validating the solution.

https://gamma.app/?utm_source=made-with-gamma

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193

